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Dempster-Shafer theory (DST) has been widely recognized across multiple disci-plines for its superior handling of uncertainty compared to traditional probabilitytheory. Nonetheless, applying Dempster’s rule in the presence of conflicting evi-dence can lead to sometimes non-intuitive outcomes. To mitigate this issue, thispaper proposes a new tangent similarity measure within DST to assess the con-flict between evidence. The proposed measure adheres to several key properties,enhancing its ability to reflect the similarity between evidence accurately. An im-proved weighted evidence combination framework utilizing the tangent similaritymeasure has also been developed. The effectiveness of the proposed method isdemonstrated through a decision-making scenario in plant disease detection.Keywords:Dempster-Shafer theoryTangent similarity measureEvidence combinationDecision makingPlant disease detection

1. Introduction
Making accurate decisions in real-life scenarios is still challenging, as information collected fromdifferent sources may be imprecise and ambiguous due to the influence of multiple factors [27]. Inorder to better manage this imprecise information, many theories have been developed, such as fuzzyset and its extension theories [1, 4, 32], Dempster-Shafer theory [20, 28, 33], possibility theory [9,40], neutrosophic set theory [8, 25, 34], etc. These theories have proven effective in various domainssuch as medical diagnosis [2, 19, 29, 44], clustering [13, 16, 25, 26], classification [3, 21, 22], faultdiagnosis [14, 24], information fusion [17, 28, 42], and decision-making [18, 23].Among them, Dempster-Shafer theory (DST), initially introduced by Dempster and expanded by
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Shafer, excels in capturing and expressing uncertainty and imprecision [5, 38]. It facilitates the mergingof evidence even without prior information [27]. Furthermore, DST supports the aggregation of evi-dence through Dempster’s rule, which adheres to associative and commutative properties, making itbeneficial for fusing data from multiple sources. However, when using traditional Dempster’s rule forevidence fusion, the results often lead to conclusions that violate common sense in some cases. Thisis mainly because the traditional Dempster fusion rules are only applicable to fusion of evidence withsmall evidence conflicts. Once fusion of evidence with large conflict of evidence, conclusion paradoxwill occur.To address this shortcoming, a variety of solutions have been introduced by researchers [11, 15,35, 41, 43]. These approaches primarily concentrate on modifying Dempster’s rule or preprocessingthe evidence before applying Dempster’s rule. There are some alternative combination rules, such asYager’s rule [37] and Dubois and Prade’s rule [7]. Moreover, a notable method is Murphy’s simple av-erage method of evidences [31]. Building on Murphy’s concept, Deng et al. [6] proposed a Jousselmedistance-based weighted average method. Lin et al. [14] designed the evidential Euclidean distance toevaluate the difference between evidences. Interestingly, there are also other ways to deal with theproblem, such as Xiao’s belief divergence [36], Liu’s belief Sørensen coefficient [17], Huang et al.’s belieflogarithmic similarity [10], Liu’s evidential sine similarities [18] and Lyu and Liu’s Sharma-Mittal diver-gence [28]. Despite these efforts, the problem remains partially unsolved. Some solutions manage toalleviate the issue to an extent but inadvertently compromise essential properties like commutativityand associativity. Consequently, there remains scope for improvement in achieving a more preciselydefined result in evidence fusion.Lately, some research has focused on the tangent similarity measure within various theoreticaldomains such as fuzzy set theory [30] and neutrosophic set theory [12, 39], primarily for modelinguncertainty in information. Given its effectiveness, it is essential to integrate the tangent similaritymeasure into evidence theory, which could potentially address diverse challenges by enhancing theframework’s ability to manage uncertainty. Therefore, this paper introduces a novel tangent similar-ity measure within DST. This new tangent similarity measure aims to deliver a more precise evalua-tion of evidence conflicts. Additionally, the reliability and practical utility of the proposed measureare substantiated through detailed mathematical proofs, demonstrating its desirable characteristics.Furthermore, an improved weighted evidence combination strategy, grounded in the proposed tan-gent similarity measure, is developed. The effectiveness of the decision-making method is validatedthrough a specific application.The structure of this paper is laid out as follows. Section 2 provides a concise overview of Dempster-Shafer theory. Section 3 introduces a novel tangent similarity measure. In Section 4, an improvedweighted evidence combination method based on the new measure is detailed. The performance ofthe method is evaluated through an application in Section 5. The paper concludes with Section 6,summarizing the key findings.
2. Background

Dempster-Shafer theory (DST) is renowned for its robust approach to uncertainty management,surpassing traditional probability models by allowing more direct expression of informational ambi-guity.In DST, let us define O as a set containing N distinct, mutually exclusive elements, labeled as theframe of discernment (FOD):
O = {O1,O2, ...,ON} (1)
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The power set of O, denoted as 2O, includes all possible subsets of O:
2O = {∅, {O1}, {O2}, ..., {ON}, {O1,O2}, ...,O} (2)

DST uses a mass function, also known as a basic probability assignment (BPA), which maps eachelement of 2O to a value between [0, 1]. This function adheres to the following criteria:
• The BPA m assigns to each subset a value such that m : 2O → 1.
• The sum of belief values for all subsets is 1: ∑

Oi⊆O
m(Oi) = 1.

• The belief assigned to the empty set is zero: m(∅) = 0.
This mapping ensures that each subset Oi, if it holds any positive belief value m(Oi) > 0, isconsidered a focal element.When dealing with two independent BPAs m1 and m2, Dempster’s rule of combination offers asystematic approach to integrate these beliefs, defined as:

m(Oi) =

 0, Oi = ∅∑
Oj∩Ok=Oi

m1(Oj)m2(Ok)

1−K
, Oi ̸= ∅

(3)

with
K =

∑
Oj∩Ok=∅

m1(Oj)m2(Ok) (4)
where K is the conflict coefficient between m1 and m2.
3. Proposed tangent similarity measure

In DST, measuring the similarities between evidences effectively is still a challenging issue. Thissection introduces a novel tangent similarity measure to address this challenge. Additionally, we delveinto several properties of the newly proposed similarity measure to highlight its potential advantages.
Definition 1 (Tangent similarity measure) Letm1 andm2 are two BBAs onO, a new tangent similarity
measure (GCSM ) betweenm1 andm2 is defined as:

TSM(m1,m2) = 1− tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)|

)
(5)

Different from the previous tangent similarity measures, we use BPAs to replace the probability distri-bution function, thereby ensuring that the proposed tangent similarity measure can work under theframework of DST.
Theorem 1 The proposed TSM satisfies the following properties:

1. Symmetry: TSM(m1,m2) = TSM(m2,m1).

2. Bounded: 0 ≤ TSM(m1,m2) ≤ 1.

3. Non-degeneracy: TSM(m1,m2) = 1 iffm1 = m2.
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Proof 1 For two BBAsm1 andm2 onO, we have:

TSM(m1,m2) = 1− tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)|

)

Clearly, we can get the following:

0 ≤
∑
Oi⊆O

|m1(Oi)−m2(Oi)| ≤ 2

and
0 ≤ π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)| ≤
π

4

For tan(x), x ∈ [0, π
4
], its range is [0, 1]. Therefore, 0 ≤ TSM(m1,m2) ≤ 1.

Proof 2 For two arbitrary BPAsm1 andm2 inO, we have:

TSM(m1,m2) = 1− tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)|

)

= 1− tan

(
π

8

∑
Oi⊆O

|m2(Oi)−m1(Oi)|

)
= TSM(m2,m1)

We can obtain TSM(m1,m2) = TSM(m2,m1).

Proof 3 For two same BPAsm1 andm2 inO, we have:

TSM(m1,m2) = 1− tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)|

)

= 1− tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m1(Oi)|

)
= 1

Also, suppose that TSM(m1,m2) = 1, we have:

1− tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)|

)
= 1

and

tan

(
π

8

∑
Oi⊆O

|m1(Oi)−m2(Oi)|

)
= 0

We can getm1 = m2. Thus, we verify the property of non-degeneracy.
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Figure 1: Results of TSM with various λ.
Example 1 Suppose two BPAsm1 andm2 inO = {O1,O2}.

m1 : m1({O1}) = λ, m1({O2}) = 1− λ

m2 : m2({O1}) = 0.5, m2({O2}) = 0.5

where 0 ≤ λ ≤ 1.
As illustrated in Figure 1, where the x-axis indicates variations in λ, with an interval of 0.05. Specif-

ically, at λ = 0.5, thenm1({O1}) = 0.5,m1({O2}) = 0.5, resulting inm1 being equal tom2, and the
TSM reaching itsmaximumvalue of 1. Moreover, TSM remainswithin the range of [0, 1] irrespective
of changes in λ. Additionally, the symmetry of TSM is evident as TSM(m1,m2) = TSM(m2,m1).
This scenario demonstrates the symmetry, bounded, and non-degeneracy properties of TSM .

4. Proposed improved weighted evidence combination method
In this section, a new tangent similarity measure-based evidence combination decision-makingmethod is introduced. Then, We illustrate the effectiveness of the proposed method through a casestudy of plant disease detection.

4.1 A weighted evidence combination method

Step 1: Let us consider m1,m2, ...,mn as n independent evidences corresponding to the FOD O =
{O1, ...ON}. Utilizing the defined tangent similarity measure to calculate the difference between any
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Model the data into BPAs

Step 4: Compute the weighted average evidence

Step 5: Fuse the weighted average evidence by Dempster s rule

Fusion results

Step 1: Construct the tangent similarity measure matrix

Step 2: Compute the support degree of each evidence

Step 3: Obtain the final weight of each evidence

Figure 2: The flowchart of the proposed method.

43



two evidences mk and ml, the similarity measure matrix SMMn×n is structured as follows:

SMMN×N =


1 TSM12 . . . TSM1n

TSM21 1 . . . TSM2n... . . . ...
TSMn1 TSMn2 . . . 1

 (6)

Step 2: For each mk, compute the support degree Supk by summing the similarity of mk with allother belief functions, represented by:
Supk =

n∑
l=1,l ̸=k

TSMkl (7)
Step 3: The weight wk for each mk is then calculated based on its support degree relative to thetotal support degrees of all evidences, expressed as:

wk =
Supk
n∑

k=1

Supk

(8)

Step 4: Obtain the weighted average evidence m̄ as:
m̄(Oi) =

n∑
k=1

wk ×mk(Oi) (9)
Step 5: Utilize Eq. (3) to fuse m̄ n− 1 times.The flowchart of the proposed method is shown in Figure 2.

4.2 Case study in plant disease detection

Table 1: BPAs modeled in plant disease detection
BPAs {O1} {O2} {O3} {O1,O2} {O1,O3} O

m1 0.10 0.60 0 0 0.10 0.20
m2 0 0.70 0 0.20 0 0.10
m3 0.8 0 0.1 0 0 0.10
m4 0.20 0.20 0.50 0 0.10 0
m5 0 0.55 0.20 0.20 0 0.05

Plants play a vital role in our ecosystems, supplying essential resources like oxygen and sustenance.Yet, these crucial organisms are vulnerable to diseases that can drastically impact their developmentand survival. Leaf disease stands out as a prevalent issue that can greatly diminish crop yields andquality, posing significant threats to agricultural productivity and the economic well-being of farmers.Consequently, accurate identification of plant diseases is essential for maintaining robust plant health.Consider the information from five experts on plant leaf diseases, represented through BPAs. Thediseases under consideration include early blight (O1), gray leaf spot (O2), and bacterial spot (O3),which form the framework of discernment O = O1,O2,O3. The BPAs from each expert’s data arepresented in Table 1. Notably, most BPAs indicate agreement on disease O2 except for m3 and m4.
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Due to its significant divergence from the collective assessment, m3 and m4 are considered unreliableevidence because of their pronounced conflict with the other evidence.By following the five steps of the combination process to address the plant disease detection prob-lem, the ultimate decision result acquired by fusing all evidences is shown in Table 2 and Figure 3.Notably, when all evidence is combined, our method yields a belief value for the true disease of over92%. To demonstrate the validity and effectiveness of our combination method, we compare it withthe current combination methods. When all evidence is combined, the results of different methodsare also presented in Table 2 and Figure 3. The classical Dempster’s rule [5] struggles to representtruth when evidence conflicts are high. Murphy’s method [31] fails to recognize the importance ofeach piece of evidence, making it difficult to achieve higher beliefs in the presence of conflict. Al-though other methods [6, 14] can also effectively identify disease type, their highest belief degree islower than the proposed method. Figure 4 shows the results on identified disease type of differentmethods. It can be concluded that the proposed method works well, especially in the case of conflict-ing evidence, and the proposed method has better performance than other methods. The proposedmethod provides a more accurate view of uncertainty, capturing subtle details that are often ignoredby traditional methods. This enhances our understanding of the reliability of information and supportsbetter decision-making.
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(a) Results with two BPAs.
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(b) Results with three BPAs.
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(c) Results with four BPAs.
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(d) Results with five BPAs.
Figure 3: The results of various methods.
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Table 2: Results of different methods
Methods m̃ m1,2 m1,2,3 m1,2,3,4 m1,2,3,4,5

Dempster’s rule [5] {O1} 0.0581 0.5460 0.6209 0.3711
{O2} 0.8605 0.4000 0.3095 0.5876
{O3} 0 0.0162 0.0638 0.0406

{O1,O2} 0.0465 0.0216 0 0
{O1,O3} 0.0116 0.0054 0.0058 0.0007

O 0.0233 0.0108 0 0Murphy’s method [31] {O1} 0.0489 0.3526 0.3732 0.1767
{O2} 0.8592 0.6134 0.5633 0.7967
{O3} 0 0.0084 0.0567 0.0245

{O1,O2} 0.0460 0.0140 0.0030 0.0017
{O1,O3} 0.0201 0.0056 0.0030 0.0004

O 0.0259 0.0059 0.0007 7× 10−5

Deng et al.’s method [6] {O1} 0.0489 0.2206 0.2710 0.0760
{O2} 0.8592 0.7457 0.6696 0.9065
{O3} 0 0.0059 0.0518 0.0154

{O1,O2} 0.0460 0.0146 0.0032 0.0017
{O1,O3} 0.0201 0.0071 0.0036 0.0003

O 0.0259 0.0061 0.0008 6× 10−5

Lin et al’s method [14] {O1} 0.0489 0.2594 0.2953 0.0996
{O2} 0.8592 0.7064 0.6365 0.8771
{O3} 0 0.0068 0.0609 0.0212

{O1,O2} 0.0460 0.0143 0.0030 0.0016
{O1,O3} 0.0201 0.0069 0.0035 0.0004

O 0.0259 0.0062 0.0008 6× 10−5

Proposed method {O1} 0.0489 0.1515 0.2221 0.0570
{O2} 0.8592 0.8162 0.7191 0.9268
{O3} 0 0.0041 0.0509 0.0142

{O1,O2} 0.0460 0.0153 0.0031 0.0017
{O1,O3} 0.0201 0.0071 0.0039 0.0003

O 0.0259 0.0058 0.0009 6× 10−5

5. Conclusions
In this paper, we present a new tangent similarity measure within the DST framework, specificallydesigned to efficiently handle and resolve conflicts between evidence. Additionally, the paper intro-duces a new evidence combination technique that leverages the strength of the proposed tangent sim-ilarity measure. The proposed method is particularly useful in decision-making environments wheremanaging conflicting evidence poses substantial challenges. The utility and efficacy of the methodhave been thoroughly demonstrated through a real-world application, confirming not only the effec-tiveness of the proposed method but also its capacity to enhance decision-making processes. In thefuture, we hope to extend the proposed method’s application to other domains involving uncertaintyand imprecision, such as medical diagnosis and autonomous driving systems. In addition, we intendto explore further the potential of tangent similarity measures in identifying differences between ev-
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Figure 4: The results on identified disease type (O2) of various methods.
idence in the framework of generalized evidence theory.
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