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Compared with the existing fuzzy numbers, normal T-spherical fuzzy 
numbers (NTSFNs) inherit the merits of T-spherical fuzzy numbers and 
normal fuzzy numbers. They can describe normal distribution phenomena 
and neutral information at the same time. It not only has a large expression 
domain, but also has a strong ability to handle indeterminacy and vagueness. 
In this article, the main purpose is to introduce a novel distance measure and 
improve the ARAS (Additive Ratio Assessment) method in the NTSF context 
to solve the group decision-making problem with combined weight 
information and make up for the shortcomings of the existing ARAS 
approaches, for example, correlations between attributes are ignored, the 
decision process is inflexible, and ARAS has not been extended in the NTSF 
environment, etc. First, we define a Hamming distance measure with NTSFNs 
and propose several Aczel-Alsina operational laws of NTSFNs. Then, we 
develop the normal T-spherical fuzzy Aczel-Alsina Heronian mean 
(NTSFAAHM) operator and its weighted form (NTSFAAWHM), and related 
properties and special cases are discussed. Third, For the NTSF multi-
attribute group decision-making (MAGDM) problems, we define the NTSF 
similarity, improve SWARA (Stepwise Weight Assessment Ratio Analysis) and 
build MDM (maximizing deviation model) to calculate expert weight and 
attribute subjective and objective weight respectively based on NTSF 
Hamming distance. Furthermore, we integrate the NTSFAAWHM operator 
and Hamming distance with ARAS method to form a novel alternative ranking 
technique, namely NTSF ARAS-H method. Lastly, a numerical example of 
investment decision for internet waste clothing recycling platform (IWCRP) 
is presented to show the rationality of methodology. The results indicate that 
the proposed method has the advantages of clear results, strong operability, 
reasonable and effective decision-making results, and reliability. 
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1. Introduction 
 

Considering the vagueness, uncertainty, and incompleteness of evaluation information in 
MAGDM problems, Atanassov [1] extended an intuitionistic fuzzy set (IFS) with membership degree 

(MD) () and non-membership degree (ND) () based classical fuzzy set (FS) [2]. The Pythagorean 

fuzzy set (PyFS) was proposed by Yager and Abbasov [3] to make up for the deficiency that +>1 
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(,[0,1]), and PyFS satisfies2+2 >1 (,[0,1]). Subsequently, Yager [4] introduced a more 
flexible q-rung orthopair fuzzy set (q-ROFS) concept, namely flexibly adjusting the decision range 

expressed by MD and ND through parameter q, and meeting the condition: q+q >1 (,[0,1]). 
However, the evaluation object cannot be fully described by relying only on MD and ND in the above 

various fuzzy sets. Cuong [5] advanced a picture fuzzy set (PFS) containing MD (), abstinence degree 

(AD) (), and ND () as another form of generalized FS that can describe more information. Although 
PFS has a stronger ability to describe vagueness and uncertainty than IFS, PyFS, and q-ROFS, it still 

has no way to deal with the evaluation information when ++>1 (,,[0,1]). In this regard, the 
idea of spherical fuzzy set (SFS) was extended and promoted by Mahmood et al.[6] to the generalized 
form, i.e., T-spherical fuzzy set (TSFS). It remove the restriction of decision-makers (DMs) in the 
allocation of MD, AD, and ND with a larger decision space and enable them to express DMs’ 
preferences and opinions more freely. Obviously, the SFS, PFS, q-ROFS, PyFS, and IFS are all particular 
examples of TSFS. In addition, there are many phenomena of normal distribution in real life, so it is 
of great significance to study the integrating of normal distribution. Based on the concepts of normal 
fuzzy numbers [7] and normal intuitionistic fuzzy numbers [8,9], Liu et al. extended an NTSFNs [10,11]. 
Although the NTSFNs have a large information expression domain and retain the neutral view of DMs, 
there are few works on NTSFNs, especially the MAGDM method in normal T-spherical fuzzy (NTSF) 
context. Therefore, the research on NTSF MAGDM method is the first motivation of this paper. 

T-norm and T-conorm (TT) are the core foundations of various fuzzy sets operations. Many 
scholars have studied many aggregation operators based on TT in different fuzzy contexts. For 
instance, Algebraic TT [12], Einstein TT [13], Hamacher TT [14], Frank TT [15], Dombi TT [16], 
Schweizer-Sklar TT [17], etc. In 1982, Aczél and Alsina introduced the Aczel-Alsina (AA) TT, which have 
the advantage of changeability by adjusting a parameter [18]. Hussain et al. [19] believed that it is 
more flexible than the above TT. At present, the research on AA TT has become a hot spot. Many 
scholars have carried out fruitful study in various fuzzy environments, such as IFS [20], IVIFS[21], PyFS 
[22], PFS [23,24], hesitant fuzzy set [25], entropy fuzzy element [26],  Neutrosophic Z-numbers [27], 
TSFS [22] and bipolar complex fuzzy [28]. We have noticed that the AA TT operations have not been 
explored in the NTSF environment. In addition, the relationship between attributes should not be 
ignored in the actual decision-making situation. Existing aggregation operators such as Bonferroni 
mean (BM) [29], Heronian mean (HM) [30], Muirhead mean (MM) [31] and Maclaurim symmetric 
mean (MSM) [32] have the power to identify the correlation among input arguments. Although MSM 
and MM have the ability to capture multiple input arguments relationships than HM and BM that 
only consider the correlation of two arguments [33], the formers have higher computational 
complexity than the latter with the increase of the number of arguments. Moreover, the HM can pay 
attention to the relationship between input arguments and itself, and reduce computational 
redundancy, which has more superiorities than BM [34,35]. However, there are no developments of 
the HM with NTSFNs at present. To sum up, it is necessary to define AA operational laws in NTSF 
environment and develop it with HM operator. Therefore, this is the second motivation for this work. 

ARAS method is an efficient ranking technique, which was introduced by Zavadskas and Turskis 
[36]. There are five main steps: construction of decision matrix, data normalization, definition of 
normalized weighting matrix, calculation of optimal function and utility degree, and final ranking of 
alternatives [37]. The ARAS method simplifies the calculation process of decision-making, and 
determines the optimal solution of complex decision-making problems through relative index (utility 
degree). This index can not only remove the impact of various measurement units, but also effectively 
express the relative difference between the alternative and the ideal solution [37]. Therefore, the 
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merits of ARAS method are summarized as follows: (1) it can be directly proportional to the attribute 
weight. (2) Able to handle complex decision-making problems. (3) The calculation process is 
uncomplicated and the result is reliable. In recent years, the ARAS approach has been extended by 
scholars in different fuzzy decision environments. For example, FSs [38,39], rough sets [40], hesitant 
linguistic sets [41], neutrosophic sets [42], PFSs[43], IFSs [44], Fermatean fuzzy sets (FFSs) [45], SFSs 
[46] and q-ROFSs [47], etc. The relevant studies are shown in Table 1. 

 
Table 1  
Existing studies on ARAS methods 
Authors (Year) Info. 

type 
Calculation of optimal function  Calculation of utility degree 
Operational 
rules 

Whether to 
consider attribute 
interrelationship 

Whether 
to 
calculate 
flexibility 

Whether to 
de 
fuzzification 

Calculation of 
deviation 
from ideal 
solution 

Turskis and 
Zavadskas 
(2010)[48] 

FS Algebraic No No Yes Ratio form 

Zamani et 
al.(2014)[49] 

FS Algebraic Yes No Yes Ratio form 

Liao et 
al.(2016)[50] 

FS Algebraic No No Yes Ratio form 

Radovic et 
al.(2018) [40] 

RS Algebraic No No No Ratio form 

Dahooie et 
al.(2018)[51] 

GS Algebraic No No Yes Ratio form 

Buyukozkan and 
Gocer 
(2018)[52] 

IVIFS Algebraic No No Yes Ratio form 

Iordache et 
al.(2019)[53] 

IT2HFS Algebraic No No Yes Ratio form 

Liao et 
al.(2019)[41] 

HFLS Algebraic No No Yes Ratio form 

Liu et 
al.(2019)[42] 

PMVNS Algebraic Yes No Yes Ratio form 

Buyukozkan and 
Guler(2020)[76] 

HFLS Algebraic No No Yes Ratio form 

Jovc ic  et 
al.(2020)[43] 

PFS Algebraic No No Yes Ratio form 

Mishra et 
al.(2020)[44] 

IFS Algebraic No No Yes Ratio form 

Gül (2021)[45] FFS Algebraic No No Yes Ratio form 
Gül (2021)[46] SFS Algebraic No No Yes Ratio form 
Dorfeshan et 
al.(2021)[54] 

IT2FS Algebraic No No Yes Ratio form 

Karagoz et 
al.(2021)[55] 

IT2FS Algebraic No No Yes Ratio form 

Mishra and Rani 
(2021)[47] 

q-ROFS Algebraic No No Yes Ratio form 

Mishra et 
al.(2021)[56] 

HFS Algebraic No No Yes Ratio form 

Mishra et 
al.(2022)[57] 

PyFS Algebraic No No Yes Ratio form 

Rani et PyFS Algebraic No No Yes Ratio form 
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al.(2022)[58] 
Tanackov et 
al.(2022)[59] 

IRS Algebraic No No No Ratio form 

Mishra et 
al.(2023)[60] 

IFS Algebraic No No Yes Ratio form 

Teng and 
Shen(2023)[61] 

UDHLTS Algebraic No No No Ratio form 

Jaisankar et 
al.(2023)[62] 

PHFS Algebraic No No Yes Ratio form 

Fan et 
al.(2023)[63] 

PFS Algebraic No No Yes Ratio form 

Adah et 
al.(2023)[64] 

SVNS Algebraic No No Yes Ratio form 

This paper NTSFS Aczel-
Alsina 

Yes(NTSFAAWHM) Yes No Hamming 
distance 

Through sorting out the above works, we find that there are four shortcomings in traditional ARAS 
method. (1) At present, there is no research on extending ARAS method in NTSF context. (2) The 
interrelationship between input arguments is ignored in the calculation of ARAS. (3) In the existing 
ARAS methods, the optimal function of each alternative needs to be defuzzified by the score function 
or expected function before obtaining utility degree. If the expected value of NTSFN proposed by Liu 
and Wang [11] is used for defuzzification, some information may be lost, because the expected value 
ignores the impact of standard deviation and AD on the final result of each alternative. (4) The existing 
researches use the form of ratio for measuring the deviation of the ideal solution, and the premise of 
this process is to defuzzify the combined values of alternatives. In this form of ratio, if the value of 
the ideal solution is too large or too small, the final utility degree of the alternatives will be excessively 
reduced or enlarged, which will result in mistakes in the ranking of the alternatives. Therefore, it is 
necessary to expand and improve ARAS technique to make up for the above four defects in the NTSF 
context, which is the third motivation of this paper. 

Combining the above three research motivations, the research in this manuscript enriches the 
normal fuzzy theoretical system, and in the NTSFS environment, we creatively fuse AA and HM to 
develop novel aggregation operators, and in this way to improve the traditional ARAS method, which 
is the novel method is more capable of reflecting the actual situation of decision-making problems, 
and it has a greater practical significance in the practical applications. In summary, the main aim of 
this article is to extend and improve the ARAS method in the NTSF environment so that it can 
effectively solve the NTSFMAGDM problem. So, a novel NTSF Hamming distance measure is 
developed in this article, and the NTSF similarity measure, NTSF MDM-H and NTSF SWARA-H 
approaches based on this Hamming distance are defined, developed and improved, respectively. 
Then, the expert weights about the attributes are determined by the NTSF similarity measure, and 
the objective and subjective weights of the attributes are calculated using the NTSF MDM-H and NTSF 
SWARA-H approaches, respectively, which leads to the combined weights of the attributes. In 
addition, we develop the NTSFAAWHM operator for aggregating the evaluation data of each attribute 
of the alternatives and are able to represent the correlation relationships between attributes and the 
decision flexibility of the information fusion process. Meanwhile, The NTSF Hamming distance 
measure is used to substitute the ratio operation to determine the degree of deviation between the 
combined values of the alternatives and the ideal solution, and then, the prioritization of the 
alternatives will be determined. The research logic of this paper to solve the NTSFMAGDM problem 
based on the improved ARAS method is shown in Figure 1. 
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Fig. 1. The research logic of this paper 

 
Some contributions of this article are presented as below. 
(1) In this paper, the AA operational laws of NTSFNs are defined, the NTSFAAHM and NTSFAAWHM 

operators are developed, their related properties and some special cases are discussed. 
(2) We define the NTSF Hamming distance. Based on this, the NTSF similarity is defined to 

determine the expert weight with regard to attributes, the MDM is constructed to calculate the 
attribute objective weight, and the SWARA is extended to determine the subjective weight of 
attribute. 

(3) The ARAS technique is improved with NTSFNs. The NTSFAAWHM operator is used to capture 
the correlation of input arguments, and using the defined Hamming distance to measure the 
deviation between each alternative and the ideal solution. 

(4) A numerical example of investment decision for IWCRP is provided to show the feasibility of 
this method. The reliability, effectiveness and rationality are verified via parameter influence analysis 
and method comparisons. 

The rest of this article is arranged as follows: Some basic notions are reviewed, and some new 
concepts are defined in Section 2; Section 3 develops the NTSFAAHM and NTSFAAWHM operators. 
Section 4 designs an ARAS-H-based MAGDM model with NTSFNs. Section 5 gives a numerical example 
of investment decision of IWCRP to show the proposed method. Section 6 provides the conclusions. 
 
2. Preliminaries 
 

This section briefly reviews the relevant notions, including the NTSFN, AA TT. And we define the 
Hamming distance measure and develop the AA operational laws of NTSFNs. 
 
2.1 NTSFN and related definitions 

 
Liu and Wang [11] proposed the following definition of NTSFN based on the advantages of TSFS 

[6] and normal fuzzy number [7]. 
Definition 1 [11]. Suppose X is a general finite nonempty set, (α,σ) is a normal fuzzy number, 

δ=((α,σ), (τδ, ηδ, ϑδ)) is a normal T-spherical fuzzy number (NTSFN). Its MD can be expressed as

( )   
  −= −

2
( ) exp x ax  , xX. AD is described as ( )   

  −= − − −
2

( ) 1 (1 )exp x ax  , xX. ND is 
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described as ( )   
  −= − − −

2
( ) 1 (1 )exp x ax  , xX. where 0≤τδ, ηδ, ϑδ≤1, they satisfy 

     + + 0 1q q q  , q is a positive integer. And the refusal degree can be described as 

      = − − −( ) 1 ( ) ( ) ( )q q qqx x x x . 

Definition 2[11]. Let =((,), (,,)) be a NTSFN, then its expected function (Ex()) can be 
defined as 

   


+ −
=

(1 )
( )

2

q q

Ex
 

(1) 

Definition 3[11]. For a NTSFN =((,), (,,)), then its score functions (sc()) are defined as  

    = −1( ) ( )q qsc ，
    = −2( ) ( )q qsc ； (2) 

and accuracy functions (ac()) are described as 

      = + +1( ) ( )q q qac ；
      = + +2( ) ( )q q qac .                      (3) 

For any two NTSFNs 1=((1,1), (1,1,1)) and 2=((2,2), (2,2,2)), there are the following 
comparison rules: 

(1) If sc1(1)> sc1(2), then 1>2; 

(2) If sc1(1) = sc1(2) and ac1(1)> ac1(2), then 1>2; 

(3) If sc1(1) = sc1(2) and ac1(1) = ac1(2), then 

(i) If sc2(1) < sc2(2), then 1>2; 

(ii) If sc2(1) = sc2(2) and ac2(1) < ac2(2), then 1>2; 

(iii) If sc2(1) = sc2(2) and ac2(1) = ac2(2), then 1=2. 

Definition 4[11]. Let 1=((1,1), (1,1,1)) and 2=((2,2), (2,2,2)) be arbitrarily two NTSFNs, 

real number 0, then their basic operational rules are as following. 

(1) ( )( )           + + − − −1 2 1 2 1 2 1 2 1 2 1 2= ( , ), 1 (1 )(1 ), ,q qq ; 

(2) ( ) 

 
           

   + − − − − − −  
  

2 2
1 2
2 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2= , , , 1 (1 )(1 ), 1 (1 )(1 )q q q qq q ; 

(3) ( )( )       = − −1 1 1 1 1 1( , ), 1 (1 ) , ,qq ; 

(4) ( ) ( )( )            −= − − − −1 2 1
1 1 1 1 1 1 1, , , 1 (1 ) , 1 (1 )q qq q . 

Theorem 1 [11]. Let 1=((1,1), (1,1,1)) and 2=((2,2), (2,2,2)) be arbitrarily two NTSFNs, 

real numbers ,1,20, then they satisfy the below operational properties. 
(1)     1 2 2 1= ; 

(2)     1 2 2 1= ; 
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(3)      1 2 1 2( )= ; 

(4)        = +1 1 2 1 1 2 1( ) ; 

(5)       1 2 1 2( ) = ; 

(6)       +
 =1 2 1 2( )

1 1 1 . 

Definition 5 [11]. Let δ1=((α1,σ1), (τ1,η1,ϑ1)) and δ2=((α2,σ2), (τ2,η2,ϑ2)) be arbitrarily two NTSFNs, 
q1, then the distance between them is defined as 

( ) ( )( ) ( ) ( )( )                 = + − − − + − − + + − − − + − −
2 2

1 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1
( , ) 1 1 1 1

2 2
q q q q q q q q q q q qd (4) 

The refusal degree of NTSFN is ignored in Eq.(4), which may cause the loss of some evaluation 
information. To this end, we propose a new Hamming distance measure of NTSFNs, which is defined 
as below: 

Definition 6. Suppose 1=((1,1), (1,1,1)) and 2=((2,2), (2,2,2)) are arbitrarily two 

NTSFNs, q1,then their Hamming distance measure can be described as below. 

               
 

               

 − + − + − + −
 =
 + − + − + − + −
 

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

( , )

q q q q q q q q

H q q q q q q q q
D

  

(5) 

Theorem 2. Suppose i=((i,i), (i,i,i)) (i=1,2,3) are any three NTSFNs, q1. The Hamming 
distance of NTSFNs satisfies the below properties. 

(1) DH(1,2)0; 

(2) If 1=2, then DH(1,2)=0; 

(3) DH(1,2)= DH(2,1); 

(4) DH(1,2)+ DH(2,3)DH(1,3). 
Proof: We can easily prove that properties (1)~(3) are all true. Next, we prove property (4).  

Based on the Definition 1, we have αi,σi>0, τi,ηi,ϑi[0,1], and    + + 0 1q q q
i i i

. Then, 

1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3

1 3

1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3

1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2

 

 

   

 − + − + − + −
 =
 + − + − + − + −
 

− + − + − + − + − + − + − +
=

( , )

q q q q q q q q

H q q q q q q q q

q q q q q q q q q q q q q q

τ α τ α η α η α α α π α π α
D δ δ

τ σ τ σ η σ η σ σ σ π σ π σ

τ α τ α τ α τ α η α η α η α η α α α α α π α π α π 2 3 3

1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3

1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2

   

   

 −
 
 + − + − + − + − + − + − + − + −
 

− + − + − + − + − + − + − +


q q

q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q

α π α

τ σ τ σ τ σ τ σ η σ η σ η σ η σ σ σ σ σ π σ π σ π σ π σ

τ α τ α τ α τ α η α η α η α η α α α α α π α π α π 2 3 3

1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3 1 1 2 2 2 2 3 3

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1

   

 

 

 −
 
 + − + − + − + − + − + − + − + −
 

− + − + − + −
=

+ − + − + − +

q q

q q q q q q q q q q q q q q q q

q q q q q q q q

q q q q q q

α π α

τ σ τ σ τ σ τ σ η σ η σ η σ η σ σ σ σ σ π σ π σ π σ π σ

τ α τ α η α η α α α π α π α

τ σ τ σ η σ η σ σ σ π

2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3

1 2 2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3

1 2 2 3

 

 

   − + − + − + −
   +
   − + − + − + − −
   

= +( , ) ( , )

q q q q q q q q

q q q q q q q q q q

H H

τ α τ α η α η α α α π α π α

σ π σ τ σ τ σ η σ η σ σ σ π σ π σ

D δ δ D δ δ

 

Thus, DH(1,2)+ DH(2,3)DH(1,3) is hold.  
Therefore, the property (4) has been completely proved. 
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Example 1. Suppose 1=((5,5),(0.5,0.3,0.4)), 2=((5,5),(0.6,0.0,0.6)), 3=((5,5),(0.5,0.5,0.0)) and 

4=((5,5),(0.7,0.0,0.7)) are four NTSFNs, q=2. Then we calculate the distance values between 1 and 

2, 3, 4 respectively according to Eq. (4) and Eq.(5), the results are listed in Table 2. 
 
Table 2 
Comparison of two distance measures 

 DH(1,2) DH(1,3) DH(1,4) 
Definition 5 (Using 
Eq.(4)) 

0.000 0.000 0.000 

Definition 6 (Using 
Eq.(5)) 

6.200 3.200 11.400 

 

From Table 2, we use the Eq.(4) to calculate the distances between 1 and 2, 3, 4 respectively are 
all zero, while using the Eq. (5) to get different distance values. Obviously, the Eq. (4) ignores the 
influence of refusal degree in NTSFN on the measurement results, that is, the Eq. (4) cannot 
reasonably measure the distance between two NTSFNs, which may cause the loss of some evaluation 
information. Therefore, this comparison in Example 1 shows that the NTSF Hamming distance 
measure we defined is reasonable. 
 
2.2 Aczel-Alsina operational laws for TSFNs 
 

Definition 7[18]. Suppose x and yare real numbers, x, y>0, 0, then the AA TT are described as  

( ) 




 









= →


− − + −


1

( , )                                      if =0     

( , ) min( , )                                     if 

exp ( ln ) ( ln ) otherwise

D

A

T x y

T x y x y

x y

 (6) 

( ) 




 









= →

− − − − + − −


1

( , )                                                          if =0     

( , ) max( , )                                                         if 

1 exp ( ln(1 )) ( ln(1 )) otherwise

D

A

S x y

S x y x y

x y



 (7) 

Hussain et al.[19] proposed AA operational rules of TSFNs based on the AA TT, they are described 
as below. 

Definition 8[19]. Let 1 = (1, 1, 1) and 2 = (2, 2, 2) be two TSFNs, , 0, the AA operational 
rules of TSFNs are defined as: 

(1)

( ) ( )( ) ( ) ( )( )

( ) ( )( )

    

 

   

 

    
− − − − + − − − − + −    

    
   =  

  − − + −  
  

1 1

1 2 1 2

1 2
1

1 2

1 exp ln(1 ) ln(1 ) , exp ln( ) ln( ) ,

exp ln( ) ln( )

q q q qq q

AA

q qq

; 
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(2) 

( ) ( )( ) ( ) ( )( )

( ) ( )( )

    

 

   

 

    
− − + − − − − − + − −    
    

   =  
  − − − − + − −  
  

1 1

1 2 1 2

1 2
1

1 2

exp ln( ) ln( ) , 1 exp ln(1 ) ln(1 ) ,

1 exp ln(1 ) ln(1 )

q q q qq q

AA

q qq

; 

(3) ( )( ) ( )( ) ( )( )
    

      
      

 = − − − − − − − −             

1 1 1

1 1 1 11 exp ln(1 ) , exp ln( ) , exp ln( )q q qq q q ; 

(4)  ( )( ) ( )( ) ( )( )
    

      
      

 = − − − − − − − − − −             

1 1 1

1 1 1 1( ) exp ln( ) , 1 exp ln(1 ) , 1 exp ln(1 )q q qq q q . 

 
2.3 AA operational laws of NTSFNs 

 
On the basis of definition 4 and definition 10, the AA operational rules of NTSFNs can be defined 

as below. 

Definition 9. Suppose 1=((1,1), (1,1,1)) and2=((2,2), (2,2,2)) are arbitrary two 

NTSFNs,,0. Then they have the following AA operational laws. 

(1) 

( ) ( )( ) ( ) ( )( )

( ) ( )( )

    

 

   
 

 
 

 

     
 − − − − + − − − − + −    

+      
    +     − − + −      

1 1

1 2 1 2

1 2

1 2
11 2

1 2

1 exp ln(1 ) ln(1 ) , exp ln( ) ln( ) ,
,

= ,

exp ln( ) ln( )

q q q qq q

AA

q qq

；  

(2) 

( ) ( )( ) ( ) ( )( )

( ) ( )( )

    

 
  

    

 
 

 

     
 − − + − − − − − + − −     
          +      − − − − + − −      

2 2
1 2
2 2
1 2

1 1

1 2 1 2
1 2

1 2
1

1 2

1 2

exp ln( ) ln( ) , 1 exp ln(1 ) ln(1 ) ,,
= ,

1 exp ln(1 ) ln(1 )

q q q qq q

AA

q qq

; 

(3) ( )( ) ( )( ) ( )( )
    

      


         
 = − − − − − − − −                   

1 1 1
1

1 1 1 1

1

,
, 1 exp ln(1 ) , exp ln( ) , exp ln( )q q qq q q ; 

(4) 

( )( ) ( )( )

( )( )

  








   



  

 



−

     
 − − − − − −    
      

=     
    − − − −      

1 1

1 1

1

1 1 2 1
1

1 1

1

exp ln( ) , 1 exp ln(1 ) ,
,

,

1 exp ln(1 )

AA

q qq q

qq

 

It is easy to prove that the above calculation results are still NTSFNs, which is omitted. 

Theorem 3. Let 1=((1,1), (1,1,1)) and 2=((2,2), (2,2,2)) be arbitrary two NTSFNs, real 

numbers , 1, 20, they satisfy the following operational properties. 
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(1)     1 2 2 1=AA AA ; 

(2)     1 2 2 1=AA AA ; 

(3)      1 2 1 2( )=AA AA ; 

(4)        = +1 1 2 1 1 2 1( )AA ; 

(5)       
 1 2 1 2( ) =AA AA AA

AA AA ; 

(6)        +
 =1 2 1 2( )

1 1 1
AA

AA . 

       
3. NTSFAAHM aggregation operators  
 

We develop the NTSFAAHM and NTSFAAWHM operators respectively based on the AA operational 
rules of NTSFNs, and discuss their related properties and some particular cases in this section. 

Definition 10[30]. For real numbers xi0 (i=1,2,…,n), s, t >0, the Heronian mean operator is 
described as  

+

= =

 
=  

+ 


1

,
1 2

1,

2
( , , , )

( 1)

n s t
s t s t

n i j
i j i

HM x x x x x
n n   

(8) 

Definition 11. Suppose i=((i,i), (i,i,i)) (i=1,2,…,n) is a family of NTSFNs, then the NTSFAAHM 
operator can be described as below: 

( )    
+

= =

 
=   

+ 

1

,
1 2

1,

2
( , , , ) ( ) ( )

( 1)

n s t
s t s t

n AA i AA j
i j i

NTSFAAHM
n n  

(9) 

Theorem 4. For a set of NTSFNs i=((i,i), (i,i,i)) (i=1,2,…,n), the result calculated by the 
NTSFAAHM operator is still a NTSFN, and even 
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

 


   

 

  

+

= =

−
+

= = = =

 
  
  +  
      +   + + +    

   
− − − −  + +  =



 

1

1,

1
1 22

2 2
1, 1,

1

,
1 2

2
,

( 1)
,

1 2 2

( 1) ( 1)

1 2
exp ln 1 exp

( 1)( , , , )

n s t
s t
i j

i j i

n ns t
js t s t i

i j i j
i j i i j i i j

s t
n

n n

ts

s t n n n n

T

s t n nNTSFAAHM










                  

           − − − − −       + +         

         − − − − −     + +       

1

1
1

1

,

1 2
1 exp ln 1 exp ,

( 1)

1 2
1 exp ln 1 exp

( 1)

q

q
N

s t n n

V

s t n n



 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  
  
                 

1

q

 (10) 

where  

( ) ( )


 

 
= =

    = − − − − + −        


1

1,

ln 1 exp ln( ) ln( )
n

q q
i j

i j i

T s t ,

( ) ( )


 

 
= =

    = − − − − − + − −        


1

1,

ln 1 exp ln(1 ) ln(1 )
n

q q
i j

i j i

N s t , 

( ) ( )


 

 
= =

    = − − − − − + − −        


1

1,

ln 1 exp ln(1 ) ln(1 )
n

q q
i j

i j i

V s t . 

The proof of Theorem 4 refers to Appendix A. 
According to Theorem 3, we can prove the below three properties of the NTSFAAHM operator: 

Theorem 5. Suppose i(i=1,2,…,n) is a set of NTSFNs, 

(1) (Idempotency). If i=  for all i, then  

   =,
1 2( , , , )s t

nNTSFAAHM  (11) 

(2) (Boundedness). If P - =min{δi}, P+ =max{δi}, then  

  − + ,
1 2( , , , )s t

nP NTSFAAHM P  (12) 

(3) (Monotonicity). If δi
*(i=1, 2,…, n) is also a collection of NTSFNs. For any i, if there is δi≤δi

*, i.e., 
αi≤αi*, τi≤τi*, ηi≥ηi* and ϑi≥ϑi*, then 

       , ,
1 2 1 2( , , , ) ( , , , )s t s t

n nNTSFAAHM NTSFAAHM  (13) 

The proofs of above properties refer to Appendix B. 
Next, some particular cases of NTSFNs operator are discussed about the parameters s and t. 

1) If t→0, the Eq. (10) is reduced to an NTSF AA generalized mean operator, i.e., 
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( )( )









  





  

−

= = =

=

→

                   

           − − − − − −                

=

  


1

1 1
1 2

2
1 1 1

1
1

1

,
1 2

0

1 1 1 1
, ,

1 1
exp ln 1 exp ln 1 ( )

lim ( , , , )

n n ns s
s s s i
i i i

i i i i

n
q s
i

i

s t
n

t

s

n s n n

s n

NTSFAAHM

( )( )

( )( )





















=

=



           − − − − − − − −                

           − − − − − − − −                





1

1

1
1

1

1
1

1

,

1 1
1 exp ln 1 exp ln 1 (1 ) ,

1 1
1 exp ln 1 exp ln 1 (1 )

q

n
q s

q i
i

n
q s

q i
i

s n

s n

 
 
 
 
 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
    
  

  (14) 

2) If s=1, t→0, the Eq. (10) is reduced to an NTSFAA weight average operator, where weight vector 
is w=(1/n,1/n,…,1/n) i.e., 
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(15) 
3) If s=t=0.5, the Eq. (10) is reduced to an NTSFAA basic HM operator, i.e., 
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(16) 
4) If s=t=1, the Eq. (10) is reduced to an NTSFAA line HM operator, i.e., 
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where 
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The NTSFAAHM operator does not consider the importance of input arguments. However, the 
importance of aggregated arguments plays a significance role in the actual decision-making and 
evaluation information fusion process. Thus, we should embed weights in the NTSFAAHM operator, 
and the NTSFAAWHM operator is fined as below: 

Definition 12. Let δi=((αi,σi), (τi,ηi,ϑi)) (i=1,2,…,n) be a family of NTSFNs, φ, s, t ≥0. Their weight 
vector is w=(w1,w2,…,wn)T, with wi>0 and ∑ 𝑤𝑖
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Theorem 6.Supposei=((i,i), (i,i,i)) (i=1,2,…,n) is a family of NTSFNs, , s, t 0. Then according 
to Eq.(18), the aggregated result is still a NTSFN, and even 
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Similar to the Theorem 4, the Theorem 6 is true can be proved. We also can prove that the 
NTSFAAWHM operator has the properties of boundedness and monotonicity, but it has not the 
property of idempotency. 
 
4. Proposed NTSF MAGDM Model Based on ARAS-H 

 
In this section, we design a MAGDM framework based on the Hamming distance and ARAS-H 

approach through cohesively integrating the defined Hamming distance, NTSFAAWHM operator and 
ARAS technique with NTSFNs. This framework is divided into three phases. First, we describe the 
NTSF group decision-making problem and obtain the assessment data from experts. Then, applying 
the defined NTSF similarity, the improved SWARA approach and MDM determine the expert weight 
and attribute subjective and objective weight, respectively. The above methods are developed on 
the NTSF Hamming distance. Second, the NTSF ARAS-H method improved by the NTSF Hamming 
distance and NTSFAAWHM operator is employed to rank and select alternatives. The group decision-
making framework can be portrayed in Figure 2. The highlighted part in red in this figure is the main 
focus of this paper. 
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Figure 2. Flowchart of NTSF MAGDM model 

Phase 1. Describe Group decision-making problem and collect assessment data  

Step 1. We describe the MAGDM problems under NTSF environment as below. 
Let a finite alternative set be H={h1,h2,…,hm},an attribute set be A={a1,a2,…,an}, and their weight 

vector be w={w1,w2,…,wn}T, with ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , 𝑤𝑗 ∈ [0,1] . Expert set is E={e1,e2,…,ep}, who has 

different knowledge structure, industry background and experience. The experts’ evaluation of the 
alternative is different under a certain attribute, so the allocation of expert weights with regard to 

attribute is different. Thus, we suppose 𝜔𝜀
(𝑗)is a weight of expert e corresponding to attribute aj, with 

0 ≤ 𝜔𝜀
(𝑗)

≤ 1,∑ 𝜔𝜀
(𝑗)

= 1
𝑝
𝜀=1

 . The assessment information is expressed by NTSFNs 

( )         = ( , ),( , , )ij ij ij ij ij ijd , which is provided by  expert e(ε=1,2,…,p) of alternative hi (i=1,2,…,m) with 

regard to the attribute aj(j=1,2,…,n). Thus, we build initial individual NTSF evaluation matrices, i.e., 
D=[dij

]mn. 
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Meanwhile, the importance of attribute is given by experts and expressed it with NTSFNs, and the 
initial individual attribute importance assessment matrices can be denoted as Iε=[ιj

ε], 

( )          = ( , ),( , , )j j j j j j
(ε=1,2,…,p; j=1,2,…,n), i.e. 


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Phase 2. Determine the weight of experts and attributes 

Step 2. We get the initial individual NTSF evaluation matrices D=[dij
]mn from the experts. The 

normalized individual NTSF evaluation matrices R=[rij
]mn is converted by Eq.(20). 

( )
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  
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ij ij ij
i

h
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(20) 

whereΨ1 and Ψ2mean benefit type and cost type attributes respectively. 
Step 3. Determine expert weights based on the NTSF similarity 
Firstly, we change the individual evaluation matrix Dε into a matrix concerning each attribute, that 

is, 
 =( ) ( )[ ]j j

i p mF (ε=1,2,…,p, j=1,2,…,n), where 

( )j
i

is equal to dij
ε. 

The averaging value of alternative hi about the attribute aj is ( )     =( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ( , ),( , , )j j j j j j
i i i i i i

in the 

matrix F(j). 
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  (21) 

The NTSF similarity measure 


( )j
isim  can be defined between 


( )j
i

  and  ( )ˆ j
i

 based on the NTSF 

Hamming distance (see Eq.(5)). 






 
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=

= −



( ) ( )
( )

( ) ( )

1

ˆ( , )
1

ˆ( , )

j j
j H i i
i p j j

H i i

D
sim

D
 (22) 

The similarity matrix S(j)is built by Eq. (22), namely 
 =( ) ( )[ ]j j

i p mS sim . Then, we apply the Eq. (23) to 

obtain the weight of expert econcerning the attribute ajA. 
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


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 =

= =
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( ) 1
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1 1

m j
ij i

p m j
ii
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Obviously, 0 ≤ 𝜔𝜀
(𝑗)

≤ 1,∑ 𝜔𝜀
(𝑗)

= 1
𝑝
𝜀=1

. 

Step 4.The NTSFWA operator is applied to obtain the NTSF group decision matrix G=[gij]m×n and 
attribute importance NTSF comprehensive matrix I=[Qj]1×n. 

The evaluation information of each expert is aggregated by utilizing the NTSFWA operator [11] to 

obtain the NTSF group decision matrix
=[ ]ij m nG g , ( )    = ( , ),( , , )ij ij ij ij ij ijg . 

( ) ( ) ( )    
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Similarly, The NTSFWA operator [11] is applied to aggregate the evaluate information of experts 

to obtain the attribute importance NTSF comprehensive value ( )    = ( , ),( , , )j j j j j jQ . 
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Step 5. Determine attribute combination weight. 

Step 5.1. Calculate the objective weights by NTSF MDM-H 

We employ the MDM technique [65,66] to obtain the objective weight of attributes with 
completely unknown information. The principle of this technique is that if the deviation between 
attribute values gij in attribute aj of all alternatives is small, then the attribute is assigned a small 
weight. On the contrary, a larger weight is assigned. In this paper, we embed the Hamming distance 
into MDM, as follows. 

We build the deviation function Dj(wo) from all alternatives to others with regard to attribute aj, 
i.e., 

= = =

= = 
1 1 1

( ) ( ) ( , )
m m m

o o o
j ij H ij lj j

i i l

D w D w D g g w   (26) 

where ( , )H ij ljD g g is the Hamming distance between NTSFNs gij and glj. 

So, we get the follow mathematical model  
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s t w w

  (27) 

We establish the Lagrange function with the coefficient  to solve above model. Then we get 

 
= = = =

 
= + − 

 
  2
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j i l j

L w D g g w w  (28) 
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Then, the optimal objective weight is get as below. 
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Finally, the objective weight wj
o of attribute is determined by normalizing wj

o*, 
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=
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Step 5.2. Calculate the subjective weights by NTSF SWARA-H 
The existing SWARA methods [67,68] generally de-fuzzy first, and then arrange them in 

descending order according to the crisp values, with the difference of the crisp values as the relative 
importance. And the traditional SWARA approach has not been extended in the NTSFS environment. 
To eliminate the possibility of partial information loss caused by this process, we use the proposed 
NTSF Hamming distance measure to calculate the relative importance of attributes. The SWARA is 
extended with NTSFNs to calculate the subjective weights. The detailed algorithm is as below: 

(1) The NTSF importance degrees are arranged in descending order according to NTSFNs 
comparison rules in Definition 2, and then the relative importance Sj between Qj-1 and Qj is obtained 
by using NTSF Hamming distance measure (Eq. (5)); 

               
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q q q q q q q q
j j j j j j j j j j j j j j j j

j H j j q q q q q q q q
j j j j j j j j j j j j j j j j

S D Q Q   (31) 

(2) The relative coefficient Kj is determined by Eq.(32) 

=
= 

+ 

1             1

1      1j
j

j
K

S j
  (32) 

(3) The attribute weight ρj is calculated by Eq.(33) 

 −

=

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K

  (33) 

(4) The subjective weight wj
s of attribute is determined via normalization (Eq.(34))  




=

=

 1

js
j n

jj

w   (34) 

Step 5.3. Obtain the attribute combined weights. 

We use the Eq.(35) to calculate the combined weight wj
c (0 ≤ 𝑤𝑗

𝑐 ≤ 1,∑ 𝑤𝑗
𝑐 = 1𝑛

𝑗=1 ) 
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So, we can get the attribute combined weight vector = 1 2( , , , )c c c c
nw w w w . 

Phase 3. Ranking alternatives by the NTSF ARAS-H method 

Step 6. On the basis of NTSF group decision matrix G, the positive ideal solution h0=[g0j]1×n can be 

obtained by Eq.(36). Therefore, we can get the extended NTSF group decision matrix +

+ = ( 1)[ ]ij m nG g . 
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Step 7. We employ the NTSFAAWHM operator (Eq.(19)) to get the ideal solution optimal function 
F0 and the each alternative optimal function Fi (i=1, 2,…,m). 

( )
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w n
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i w i i in i i i i i

F NTSFAAWHM g g g

F NTSFAAWHM g g g
  (37) 

Step 8. We use the NTSF Hamming distance (Eq.(5)) to obtain the deviation between each 
alternative and ideal solution, and the utility degree Ui (i=1,2,…,m) of each alternative is calculated by 
the Eq.(38). 

               
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( , )

q q q q q q q q
i i i i i i i i

i H i q q q q q q q q
i i i i i i i i

U D F F  (38) 

Step 9.We can rank all the alternatives. The smaller the Ui is, the better the alternative si is. 
 

5.  Numerical example 
 

In this section, the feasibility of the proposed group decision-making framework is verified by a 
numerical example of investment decision for IWCRP. Then, the flexibility and effectiveness of the 
proposed NTSF ARAS-H method are further illustrated by parameter influence analysis and methods 
comparison study. Also, the comparison with the existing ARAS methods has been implemented, 
which shows the advantages of the proposed NTSF ARAS-H method for solving complex decision-
making problems. 

 
5.1 Investment decision of IWCRP 

 
In 2021, the Ministry of Commerce of China issued the development of China’s renewable 

resources industry. The report showed that recycling networks have been established in most parts 
of China at present, “Internet + recycling” and other modes have gradually matured, and the 
renewable resources recycling system integrating recycling, sorting and distribution have gradually 
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improved. In the waste clothing recycling industry, the “Internet +” recycling platform implements 
the online order and offline recycling mode, leading the transformation and upgrading of the waste 
clothing recycling industry. At present, many internet recycling platforms have emerged in China’s 
waste clothing recycling market. Due to the fierce competition in the recycling market, the internet 
recycling platform obtains investment and financing funds from the capital market to expand the 
market and deepen customer relations, so as to enhance its market competitiveness. However, for 
investors, how to choose a potential internet recycling platform as an investment object has become 
a challenging decision-making problem. 

LC, a venture capital company, plans to invest in the internet recycling platform for waste clothing. 
According to the market survey and preliminary screening, there are four Internet recycling platforms 
(h1, h2, h3, h4) for waste clothing as potential investment objects. In order to screen out the optimal 
platform project, LC company invited three senior investment experts E={e1,e2,e3}. There are six 
attributes used to evaluate the alternatives, including: platform operation and maintenance ability 
(a1), expected revenue (a2), market competitiveness (a3), risk resistance ability (a4), supply chain 
management ability (a5) and service quality (a6). These attributes are all benefit type. 

 
5.2 Decision process 

 
Step 1. To determine the best internet recycling platform for waste clothing, experts evaluate 

each platform according to six attributes, and the evaluation values are expressed in NTSFNs. The 
evaluation results are listed in Tables 3~5, (q=3). Then, experts evaluate the attribute importance and 
express it with NTSFNs, as shown in Table 6, (q=3). 

 
Table 3 
Evaluation information given by e1 

D1 a1 a2 a3 a4 a5 a6 
h1 ((7,5),(0.8,0.4,

0.5)) 
((4,8),(0.7,0.5,
0.3)) 

((9,3),(0.8,0.5,
0.5)) 

((6,6),(0.7,0.6,
0.3)) 

((5,8),(0.6,0.3,
0.8)) 

((8,8),(0.7,0.7,
0.3)) 

h2 ((9,3),(0.6,0.2,
0.6)) 

((6,6),(0.9,0.2,
0.4)) 

((6,4),(0.6,0.3,
0.3)) 

((7,4),(0.8,0.6,
0.2)) 

((7,6),(0.7,0.4,
0.4)) 

((5,7),(0.6,0.1,
0.6)) 

h3 ((4,8),(0.8,0.3,
0.1)) 

((7,6),(0.6,0.2,
0.3)) 

((7,4),(0.8,0.3,
0.4)) 

((7,7),(0.8,0.6,
0.4)) 

((8,5),(0.8,0.5,
0.4)) 

((6,5),(0.8,0.4,
0.4)) 

h4 ((5,5),(0.6,0.5,
0.4)) 

((8,9),(0.7,0.4,
0.5)) 

((7,5),(0.6,0.6,
0.3)) 

((5,4),(0.7,0.5,
0.3)) 

((6,6),(0.7,0.6,
0.3)) 

((7,5),(0.8,0.4,
0.5)) 

 
Table 4 
Evaluation information given by e2 

D2 a1 a2 a3 a4 a5 a6 
h1 ((3,6),(0.6,0.6

,0.2)) 
((5,4),(0.6,0.2,
0.3)) 

((7,6),(0.7,0.3,
0.4)) 

((5,3),(0.5,0.7,
0.4)) 

((6,6),(0.7,0.7,
0.3)) 

((7,4),(0.6,0.5,
0.6)) 

h2 ((7,5),(0.8,0.5
,0.5)) 

((6,7),(0.8,0.4,
0.6)) 

((5,4),(0.6,0.5,
0.2)) 

((6,5),(0.7,0.8,
0.2)) 

((3,8),(0.8,0.1,
0.5)) 

((7,6),(0.8,0.3,
0.3)) 

h3 ((6,4),(0.6,0.2
,0.2)) 

((6,6),(0.7,0.3,
0.4)) 

((8,5),(0.7,0.7,
0.3)) 

((9,3),(0.8,0.5,
0.5)) 

((6,5),(0.9,0.3,
0.4)) 

((8,8),(0.6,0.7,
0.1)) 

h4 ((8,5),(0.7,0.7
,0.3)) 

((7,5),(0.8,0.6,
0.3)) 

((5,6),(0.5,0.5,
0.7)) 

((4,4),(0.7,0.4,
0.2)) 

((4,6),(0.5,0.6,
0.5)) 

((6,6),(0.8,0.2,
0.6)) 

Table 5 
Evaluation information given by e3 

D3 a1 a2 a3 a4 a5 a6 
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h1 ((4,8),(0.6,0.5,
0.5)) 

((6,6),(0.6,0.7,
0.4)) 

((7,4),(0.8,0.3,
0.6)) 

((8,4),(0.5,0.6,
0.6)) 

((6,8),(0.7,0.4,
0.7)) 

((5,8),(0.8,0.4,
0.5)) 

h2 ((7,3),(0.7,0.3,
0.5)) 

((7,4),(0.7,0.5,
0.5)) 

((6,6),(0.7,0.4,
0.6)) 

((6,3),(0.8,0.4,
0.5)) 

((5,5),(0.9,0.2,
0.6)) 

((6,7),(0.8,0.3,
0.5)) 

h3 ((5,5),(0.9,0.4,
0.3)) 

((8,7),(0.7,0.1,
0.3)) 

((9,6),(0.8,0.3,
0.3)) 

((8,7),(0.8,0.2,
0.2)) 

((6,6),(0.7,0.5,
0.6)) 

((8,6),(0.6,0.6,
0.1)) 

h4 ((6,6),(0.7,0.4,
0.5)) 

((6,8),(0.7,0.3,
0.6)) 

((6,4),(0.7,0.1,
0.5)) 

((5,5),(0.5,0.6,
0.6)) 

((6,7),(0.6,0.3,
0.4)) 

((6,5),(0.7,0.4,
0.5)) 

 
Table 6 
Attribute importance degree given by three experts 

E a1 a2 a3 a4 a5 a6 
e1 ((8,6),(0.6,0.7,

0.3)) 
((7,6),(0.8,0.5,
0.4)) 

((7,6),(0.7,0.4,
0.3)) 

((7,7),(0.7,0.4,
0.4)) 

((6,7),(0.8,0.5,
0.4)) 

((7,7),(0.6,0.7,
0.3)) 

e2 ((7,7),(0.6,0.4,
0.4)) 

((6,7),(0.7,0.4,
0.4)) 

((6,7),(0.7,0.5,
0.4)) 

((7,6),(0.6,0.5,
0.2)) 

((8,6),(0.7,0.4,
0.3)) 

((7,5),(0.7,0.5,
0.2)) 

e3 ((7,7),(0.8,0.4,
0.3)) 

((7,5),(0.7,0.3,
0.3)) 

((6,7),(0.8,0.4,
0.3)) 

((8,6),(0.7,0.8,
0.1)) 

((6,7),(0.7,0.4,
0.4)) 

((8,7),(0.7,0.5,
0.3)) 

 

Step 2. Attributes a1~a6 are benefit types. We can get normalized NTSF decision matrix R(=1, 2, 
3) by using Eq. (20), see Tables 7~9. 

 
Table 7 
The normalized NTSF decision matrix R1 

R
1 

a1 a2 a3 a4 a5 a6 

h1 ((0.778,0.625)
, (0.8,0.4,0.5)) 

((0.500,0.889)
, (0.7,0.5,0.3)) 

((1.000,0.600)
, (0.8,0.5,0.5)) 

((0.857,0.857)
, (0.7,0.6,0.3)) 

((0.625,1.000)
, (0.6,0.3,0.8)) 

((1.000,1.000)
, (0.7,0.7,0.3)) 

h2 ((1.000,0.375)
, (0.6,0.2,0.6)) 

((0.750,0.667)
, (0.9,0.2,0.4)) 

((0.667,0.800)
, (0.6,0.3,0.3)) 

((1.000,0.571)
, (0.8,0.6,0.2)) 

((0.875,0.750)
, (0.7,0.4,0.4)) 

((0.625,0.875)
, (0.6,0.1,0.6)) 

h3 ((0.444,1.000)
, (0.8,0.3,0.1)) 

((0.875,0.667)
, (0.6,0.2,0.3)) 

((0.778,0.8), 
(0.8,0.3,0.4)) 

((1.000,1.000)
, (0.8,0.6,0.4)) 

((1.000,0.625)
, (0.8,0.5,0.4)) 

((0.750,0.625)
, (0.8,0.4,0.4)) 

h4 ((0.556,0.625)
, (0.6,0.5,0.4)) 

((1.000,1.000)
, (0.7,0.4,0.5)) 

((0.778,1.000)
, (0.6,0.6,0.3)) 

((0.714,0.571)
, (0.7,0.5,0.3)) 

((0.750,0.750)
, (0.7,0.6,0.3)) 

((0.875,0.625)
, (0.8,0.4,0.5)) 

 
Table 8 
The normalized NTSF decision matrix R2 

R
2 

a1 a2 a3 a4 a5 a6 

h1 ((0.375,1.000)
, (0.6,0.6,0.2)) 

((0.714,0.571)
, (0.6,0.2,0.3)) 

((0.875,1.000)
, (0.7,0.3,0.4)) 

((0.556,0.600)
, (0.5,0.7,0.4)) 

((1.000,0.750)
, (0.7,0.7,0.3)) 

((0.875,0.500)
, (0.6,0.5,0.6)) 

h2 ((0.875,0.833)
, (0.8,0.5,0.5)) 

((0.875,1.000)
, (0.8,0.4,0.6)) 

((0.625,0.667)
, (0.6,0.5,0.2)) 

((0.667,1.000)
, (0.7,0.8,0.2)) 

((0.500,1.000)
, (0.8,0.1,0.5)) 

((0.875,0.750)
, (0.8,0.3,0.3)) 

h3 ((0.750,0.667)
, (0.6,0.2,0.2)) 

((0.875,0.875)
, (0.7,0.3,0.4)) 

((1.000,0.833)
, (0.7,0.7,0.3)) 

((1.000,0.600)
, (0.8,0.5,0.5)) 

((1.000,0.625)
, (0.9,0.3,0.4)) 

((1.000,1.000)
, (0.6,0.7,0.1)) 

h4 ((1.000,0.833)
, (0.7,0.7,0.3)) 

((1.000,0.714)
, (0.8,0.6,0.3)) 

((0.625,1.000)
, (0.5,0.5,0.7)) 

((0.444,0.800)
, (0.7,0.4,0.2)) 

((0.667,0.750)
, (0.5,0.6,0.5)) 

((0.750,0.750)
, (0.8,0.2,0.6)) 

 
Table 9 
The normalized NTSF decision matrix R3 

R
3 

a1 a2 a3 a4 a5 a6 
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h1 ((0.571,1.000)
, 0.6,0.5,0.5) 

((0.750,0.750)
, 0.6,0.7,0.4) 

((0.778,0.667)
, 0.8,0.3,0.6) 

((1.000,0.571)
, 0.5,0.6,0.6) 

((1.000,1.000)
, 0.7,0.4,0.7) 

((0.625,1.000)
, 0.8,0.4,0.5) 

h2 ((1.000,0.375)
, 0.7,0.3,0.5) 

((0.875,0.500)
, 0.7,0.5,0.5) 

((0.667,1.000)
, 0.7,0.4,0.6) 

((0.750,0.429)
, 0.8,0.4,0.5) 

((0.833,0.625)
, 0.9,0.2,0.6) 

((0.750,0.875)
, 0.8,0.3,0.5) 

h3 ((0.714,0.625)
, 0.9,0.4,0.3) 

((1.000,0.875)
, 0.7,0.1,0.3) 

((1.000,1.000)
, 0.8,0.3,0.3) 

((1.000,1.000)
, 0.8,0.2,0.2) 

((1.000,0.750)
, 0.7,0.5,0.6) 

((1.000,0.750)
, 0.6,0.6,0.1) 

h4 ((0.857,0.750)
, 0.7,0.4,0.5) 

((0.750,1.000)
, 0.7,0.3,0.6) 

((0.667,0.667)
, 0.7,0.1,0.5) 

((0.625,0.714)
, 0.5,0.6,0.6) 

((1.000,0.875)
, 0.6,0.3,0.4) 

((0.750,0.625)
, 0.7,0.4,0.5) 

 
Step 3: We calculate the expert weight with regard to attributes. Take attribute h1 as an example, 

we have 

=

1 2 3 4

1(1)

2

3

                                                                                                                      

((0.778,0.625),(0.8,0.4,0.5)) ((1.000,0.375),(0.6,0.2,0.6)) ((0.4

h h h h

e
F

e

e

44,1.000),(0.8,0.3,0.1)) ((0.556,0.625),(0.6,0.5,0.4))

((0.375,1.000),(0.6,0.6,0.2)) ((0.875,0.833),(0.8,0.5,0.5)) ((0.750,0.667),(0.6,0.2,0.2)) ((1.000,0.833),(0.7,0.7,0.3))

((0.571,1.000),(0.6,0.5,0.5)) ((

 
 
 
  1.000,0.375),(0.7,0.3,0.5)) ((0.714,0.625),(0.9,0.4,0.3)) ((0.857,0.750),(0.7,0.4,0.5))

 

Then the evaluation mean value of attribute h1 is calculated by the Eq.(21). 

( ) =(1)
1

ˆ (0.575,0.875),(0.667,0.500,0.400) , ( ) =(1)
2

ˆ (0.958,0.528),(0.700,0.333,0.533) , 

( ) =(1)
3

ˆ (0.636,0.764),(0.767,0.300,0.200) , ( ) =(1)
4

ˆ (0.804,0.736),(0.667,0.533,0.400) . 

Furthermore, the similarity matrix S(1) can be obtained by the Eq. (22). 

 
 

=
 
  

(1)

0.512 0.702 0.787 0.755

0.675 0.455 0.649 0.464

0.813 0.843 0.564 0.781

S  

From Eq. (23), the weight value of experts with regard to attribute h1 is 

  = = =(1) (1) (1)
1 2 30.345, 0.280, 0.375 .Similarly, we get 

  = = =(2) (2) (2)
1 2 30.362, 0.315, 0.322;   = = =(3) (3) (3)

1 2 30.375, 0.291, 0.334 ;

  = = =(4) (4) (4)
1 2 30.361, 0.322, 0.318 ; 

  = = =(5) (5) (5)
1 2 30.347, 0.328, 0.325 ;  = = =(6) (6) (6)

1 2 30.310, 0.340, 0.350. 

Step 4.We apply the NTSFWA operator (Eq. (24)) to obtain NTSF group decision matrix G, which 
can be shown in Table 10. Also, we can obtain the attribute importance NTSF comprehensive value 
by Eq.(25). 
Q1=((7.345,6.655),(0.700,0.485,0.325)), Q2=((6.685,5.993),(0.743,0.395,0.365)), 
Q3=((6.375,6.625),(0.740,0.427,0.326)), Q4=((7.318,6.361),(0.673,0.536,0.206)), 
Q5=((6.656,6.672),(0.741,0.432,0.364)), Q6=((7.350,6.321),(0.674,0.555,0.261)). 
 
Table 10 
NTSF group decision matrix G 

G a1 a2 a3 
h1 ((0.587,0.871),(0.694,0.487,0.3

87)) 
((0.648,0.744),(0.642,0.417,0.3
29)) 

((0.889,0.739),(0.776,0.363,0.4
98)) 

h2 ((0.965,0.504), 
(0.710,0.301,0.532)) 

((0.824,0.718), 
(0.827,0.334,0.188)) 

((0.655,0.828), 
(0.639,0.383,0.336)) 

h3 ((0.631,0.766), 
(0.821,0.298,0.183)) 

((0.910,0.794), 
(0.669,0.182,0.328)) 

((0.917,0.876), 
(0.876,0.384,0.334)) 

h4 ((0.793,0.730), ((0.919,0.910), ((0.696,0.889), 
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(0.671,0.505,0.401)) (0.738,0.414,0.451)) (0.619,0.313,0.455)) 
 a4 a5 a6 
h1 ((0.806,0.684),(0.595,0.684,0.5

95)) 
((0.870,0.918),(0.671,0.435,0.5
55)) 

((0.826,0.830),(0.719,0.513,0.4
54)) 

h2 ((0.813,0.664), 
(0.774,0.579,0.268)) 

((0.739,0.791), 
(0.821,0.203,0.491)) 

((0.754,0.833), 
(0.757,0.213,0.445)) 

h3 ((1.000,0.871), 
(0.800,0.399,0.345)) 

((1.000,0.666), 
(0.823,0.423,0.456)) 

((0.922,0.796), 
(0.686,0.557,0.154)) 

h4 ((0.599,0.690), 
(0.654,0.493,0.328)) 

((0.804,0.791), 
(0.618,0.479,0.390)) 

((0.789,0.667), 
(0.771,0.316,0.532)) 

 
Step 5. We determine the attribute combined weight. First, the attribute objective weight vector 

is determined by Eqs. (26~30) as wo=(0.156,0.188,0.153,0.171,0.203, 0.129).  
Then, we compute and obtain the attribute subjective weight vector via the Eqs. (31~34), i.e., 

ws=(0.057,0.494,0.165,0.021,0.252,0.012). 
Finally, the attribute combined weight vector is calculated by Eq. (35), i.e.,  

wc=(0.106,0.345,0.180,0.068,0.256,0.044). 
Step 6. According to the group decision matrix G (in Table 9), the positive ideal solution h0 can be 

obtained by Eq. (36). Then the extended NTSF group decision matrix is shown in Table 11. 
h0={((0.965, 0.504), (0.821,0.298,0.183); ( (0.919, 0.718), (0.827,0.182,0.328)); ((0.917, 0.739), 

(0.776,0.313,0.334)); ((1.000, 0.664), (0.800,0.339,0.268)); ((1.000, 0.666), (0.823,0.203,0.390)); 
((0.922, 0.667), (0.771,0.213,0.154))}. 
Table 11 
The extended NTSF group decision matrix G+ 

G a1 a2 a3 
h0 ((0.965,0.504), 

(0.821,0.298,0.183)) 
((0.919,0.718), 
(0.827,0.182,0.328)) 

((0.917,0.739), 
(0.776,0.313,0.334)) 

h1 ((0.587,0.871), 
(0.694,0.487,0.387)) 

((0.648,0.744), 
(0.642,0.417,0.329)) 

((0.889,0.739), 
(0.776,0.363,0.498)) 

h2 ((0.965,0.504), 
(0.710,0.301,0.532)) 

((0.824,0.718), 
(0.827,0.334,0.188)) 

((0.655,0.828), 
(0.639,0.383,0.336)) 

h3 ((0.631,0.766), 
(0.821,0.298,0.183)) 

((0.910,0.794), 
(0.669,0.182,0.328)) 

((0.917,0.876), 
(0.876,0.384,0.334)) 

h4 ((0.793,0.730), 
(0.671,0.505,0.401)) 

((0.919,0.910), 
(0.738,0.414,0.451)) 

((0.696,0.889), 
(0.619,0.313,0.455)) 

 a4 a5 a6 
h0 ((1.000,0.664), 

(0.800,0.339,0.268)) 
((1.000,0.666), 
(0.823,0.203,0.390)) 

((0.922,0.667), 
(0.771,0.213,0.154)) 

h1 ((0.806,0.684), 
(0.595,0.684,0.595)) 

((0.870,0.918), 
(0.671,0.435,0.555)) 

((0.826,0.830), 
(0.719,0.513,0.454)) 

h2 ((0.813,0.664), 
(0.774,0.579,0.268)) 

((0.739,0.791), 
(0.821,0.203,0.491)) 

((0.754,0.833), 
(0.757,0.213,0.445)) 

h3 ((1.000,0.871), 
(0.800,0.399,0.345)) 

((1.000,0.666), 
(0.823,0.423,0.456)) 

((0.922,0.796), 
(0.686,0.557,0.154)) 

h4 ((0.599,0.690), 
(0.654,0.493,0.328)) 

((0.804,0.791), 
(0.618,0.479,0.390)) 

((0.789,0.667), 
(0.771,0.316,0.532)) 

Step 7. We employ the NTSFAAWHM operator (Eq.(37)) to aggregate the attribute variables of 

each alternative to obtain the following results.(=2, s=t=1). 
F0=((0.770,0.550),(0.763,0.400,0.386)),  F1=((0.617,0.656),(0.649,0.563,0.561)),  
F2=((0.633,0.606),(0.719,0.450,0.528)),  F3=((0.734,0.640),(0.727,0.500,0.413)), 
F4=((0.645,0.669),(0.635,0.530,0.525)). 
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Step 8. We use the Eq.(38) to calculate the utility degree of each alternative. 
U1=0.640, U2=0.350, U3=0.225, U4=0.581. 

Step 9. According to the utility degree of alternative, the ranking result isℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 , 
where the symbol “≻” means “superior to”. Therefore, the alternative h3 is the best investment object 
of internet recycling platform for waste clothing. 

 
5.3 Analysis and discussions 
5.3.1 Parameters influence analysis 

 

In the above case, we set the parameters in the proposed method as q=3, =2, s=t=1to get the 
final result. It is necessary to discuss whether the final ranking of the alternative in this real case will 
be affected with different parameter values. 

Firstly, the alternative ranking is discussed by taking different values of parameter  in AA TT. 
During the computational process of the NTSFAAWHM operator in Step 7, we selected various values 

from the parameter [1,100]. The final results of each alternative are shown in Table 12. 
 

Table 12 

The final results of alternatives with different  

 Results Rankings 

1 U1=0.675, U2=0.366, U3=0.232, U4=0.566 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
2 U1=0.640, U2=0.350, U3=0.225, U4=0.581 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
5 U1=0.611, U2=0.305, U3=0.204, U4=0.548 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
10 U1=0.597, U2=0.273, U3=0.187, U4=0.500 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
20 U1=0.581, U2=0.254, U3=0.172, U4=0.454 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
50 U1=0.551, U2=0.240, U3=0.159, U4=0.428 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
100 U1=0.537, U2=0.235, U3=0.156, U4=0.421 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 

 
The results in Table 12 show that the final results of the alternatives decrease as the parameter 

increases on the whole. When the parameter [1,100] takes different values, we get the utility 
degree of each alternative, and the final ranking results of the alternatives are consistent, that is, 

ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1. Therefore, the proposed method is not sensitive to change of parameter. 
Then, we discuss the influence of different values of parameters s and t on the final ranking of the 

alternative. In order to reflect the influence of parameters s, t and the interrelationship between 
these attributes, we take s and t values into three types, namely s>t, s=t and s<t. We applied this to 
the calculation of the NTSFAAWHM operator in Step 7. The final results of each alternative are shown 
in Table 13, and the ranking change of each alternative is shown in Figure 3. 

From Table 13 and Fig. 3, when parameters s=0, t=1 and s=1, t=0 indicate that there is no 
correlation between attributes, and the alternative ranking of both conditions is ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1. 
As the values of s and t increase, the degree of association between attributes increases, and the 
alternative ranking under different values is ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1, and the ranking is stable. Therefore, 
this means that the parameters s, t are not sensitive to the final result of the alternative. 
Table 13 
The final results of alternatives with different s and t 

s, t Results Rankings 
0,1 U1=0.471, U2=0.236, U3=0.126, U4=0.440 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
1,0 U1=0.556, U2=0.324, U3=0.266, U4=0.528 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
0.5,0.5 U1=0.509, U2=0.278, U3=0.194, U4=0.452 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
1,1 U1=0.640, U2=0.350, U3=0.225, U4=0.581 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
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1,3 U1=0.813, U2=0.414, U3=0.236, U4=0.741 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
3,1 U1=0.839, U2=0.475, U3=0.324, U4=0.743 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
3,3 U1=0.881, U2=0.480, U3=0.269, U4=0.713 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
3,5 U1=0.934, U2=0.493, U3=0.261, U4=0.869 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
5,3 U1=0.981, U2=0.532, U3=0.341, U4=0.888 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
5,5 U1=1.004, U2=0.531, U3=0.294, U4=0.942 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
7,7 U1=1.077, U2=0.557, U3=0.324, U4=1.038 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
9,9 U1=1.121, U2=0.587, U3=0.348, U4=1.104 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
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Figure 3. The utility degrees of alternatives with different s and t 

 
For parameter q, we change its value to observe its impact on alternative ranking. We take 

different values in the q[3,21]. The final results of the alternative are shown in Table 14. The ranking 
of the alternatives is shown in Figure 4. 

From Table 14 and Figure 4, the final results of the alternatives decrease with the increase of 

parameter q on the whole. When different values are taken for q[3,21], the final ranking of the 
alternatives is ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1, and the optimal option is always h3. Therefore, the parameter q in 
the proposed method has no effect on the final ranking of the alternative, and has stability and 
reliability. 

 
Table 14 
The final results of alternatives with different q 

q Results Rankings 
3 U1=0.640, U2=0.350, U3=0.225, U4=0.581 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
5 U1=0.523, U2=0.284, U3=0.185, U4=0.480 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
7 U1=0.439, U2=0.240, U3=0.169, U4=0.405 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
9 U1=0.392, U2=0.219, U3=0.163, U4=0.361 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
11 U1=0.365, U2=0.208, U3=0.161, U4=0.334 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
13 U1=0.346, U2=0.201, U3=0.159, U4=0.314 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
15 U1=0.333, U2=0.196, U3=0.157, U4=0.300 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
17 U1=0.323, U2=0.192, U3=0.156, U4=0.290 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
19 U1=0.316, U2=0.190, U3=0.155, U4=0.282 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
21 U1=0.310, U2=0.188, U3=0.153, U4=0.276 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 

 



Computer and Decision Making – An International Journal 

Volume 1, (2024) 279-318 

305 
 
 

 

q

Ui

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

3 5 7 9 11 13 15 17 19 21

h1

h2

h3

h4

 
Figure 4. The utility degrees of alternatives with different q 

 
5.3.2 Comparative studies 

 

(1) Comparison with aggregation operators and ranking techniques 
To verify the effectiveness of our method, the comparison with the existing MCDM techniques 

including aggregation operator and ranking method (such as SpNoFWBM [69], SNoFWPMM [70], 
NTSFWA [10], NTSFWG[10], NTSFTODIM [10], NTSF Taxonomy [10], NTSFWMSM [11] is performed. 
These methods are applied to solve the above case, and the results are shown in table 15. 

 
Table 15 
The results obtained by different methods 
Methods Results Rankings 
SpNoFWBM [69] Cannot be calculated No 
SNoFWPMM [70] Cannot be calculated No 
NTSFWA [10] Ex(s1)=0.474, Ex(s2)=0.548, Ex(s3)=0.644, 

Ex(s4)=0.502 
ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 

NTSFWG [10] Ex(s1)=0.457, Ex(s2)=0.527, Ex(s3)=0.622, 
Ex(s4)=0.491 

ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 

NTSFWMSM [11] Ex(s1)=0.874, Ex(s2)=0.898, Ex(s3)=0.926, 
Ex(s4)=0.880 

ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 

NTSFTODIM [10] 1=0.000, 2=0.565, 3=1.000,4=0.238 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
NTSFTaxonomy [10] F1=0.210, F2=0.479, F3=0.796, F4=0.303 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 
This paper U1=0.640, U2=0.350, U3=0.225, U4=0.581 ℎ3 ≻ ℎ2 ≻ ℎ4 ≻ ℎ1 

 
Table 15 shows that the SpNoFWBM and SNoFWPMM operators cannot be applied to this case, 

and the ranking results of each alternative cannot be obtained. Obviously, spherical normal fuzzy 
number is a special case of NTSFN, so the proposed method is more general and flexible. From the 
decision results, the proposed method and other methods get the same ranking, that is, ℎ3 ≻ ℎ2 ≻
ℎ4 ≻ ℎ1 , and the best alternative is h3. This can explain the effectiveness and practicality of our 
method. However, in terms of decision-making process, there are some differences between this 
method and the above method. Specifically, (1) compared with the NTSFWA, NTSFWG and 
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NTSFWMSM operators, the NTSFAAWHM operator in the proposed method can make up for the fact 
that the NTSFWA and NTSFWG operators cannot capture the interrelationship between attributes. 
Although the NTSFWMSM operator can capture the interrelationship of multiple attributes, its 
calculation process is more complex than the NTSFAAWHM operator. In addition, there are fewer 
adjustable parameters in the existing aggregation operator than the NTSFAAWHM operator, which 
shows that the decision-making flexibility of our method is high. (2) Compared with the NTSFTODIM 
and NTSF Taxonomy methods. The NTSFTODIM method calculates the dominance degrees of each 
alternative with regard to attributes. If the number of attributes or alternatives is large, then the 
complexity of calculation increases. Similarity, the decision-making steps in the NTSF Taxonomy 
method are more and the calculation process is more complex than our NTSFARAS method. (3) In 
addition, both NTSFTODIM and NTSF Taxonomy adopt distance measures without refusal degree, 
which may cause partial information loss in the decision-making process. In this regard, the NTSF 
Hamming distance we defined can make up for this shortcoming. In a word, the above comparative 
analysis can show that the method proposed in this paper is more reasonable than the existing 
methods. 

(2) Comparison with existing ARAS methods 
Next, we compare the proposed NTSF ARAS-H method with some existing ARAS methods. These 

existing ARAS methods were extended in IFSs [44], FFSs [45], q-ROFSs [47], PFSs [43] and SFSs [46]. In 
terms of decision-making process, these methods are compared with the method proposed in this 
paper, as shown in Figure 5. 

Existing ARAS methods NTSF ARAS-H method

Decision matrix G and 

attribute weight vector W

Weighted decision matrix 

G w

Positive ideal solution h0

The optimal functions Si, S0

by algebraic sum operation

Defuzzification sc(Si) and 

sc(S0)

Calculate utility Qi by ratio

Rank the alternatives

Decision matrix G and 

attribute weight vector W

The optimal functions Fi,F0

by NTSFAAWHM operator

Positive ideal solution h0

and extended matrix G +

Calculate utility Qi by 

NTSF Hamming distance

Rank the alternatives

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

V.S.

 
Figure 5. Comparison on decision-making process 

 
From Figure 5, the steps of the NTSF ARAS-H method are fewer and simpler. In terms of 

aggregation of evaluation values for different attributes of each alternative, these existing methods 
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often apply algebraic sum operation to fuse evaluation values, so as to obtain the optimal function of 
each alternative. However, the interrelationship between attributes is ignored in this process, which 
is not consistent with the actual decision-making problems. In terms of defuzzification, Mishra et 
al.[44] and Mishra and Rani[47] adopted different fuzzy score functions to precision after the 
weighting matrix stage, and Gül [45,46] used the score functions to de fuzzy before the stage of utility 
degree of alternative by ratio, Jovčić et al.[43] employed the two-step defizzification method for 
defuzzification before using the ratio to obtain the utility degree of the alternative. Although these 
methods have slightly different positions in the defuzzification stage of the decision-making process, 
their purpose is to facilitate the use of ratio approach to calculate the utility degree. In contrast, this 
paper extended and improved the ARAS method in the NTSF environment. This method used the 
NTSFAAWHM operator to replace the simple weighted summation approach. The reason is that the 
proposed operator can capture the interrelationship between attributes. Moreover, the NTSF 
Hamming distance was applied to obtain the utility degree of each alternative. It can not only achieve 
defuzzification, but also get the utility degree. A comparison of the features of these methods is 
presented in Table 16. Through the above comparative analysis, the proposed NTSF ARAS-H method 
has strong advantages in decision-making process and results. 

 
Table 16 
Comparison of features with existing ARAS methods 

Features Mishra et 
al. 
(2020)[4
4] 

Gül 
(2021a)[4
5] 

Mishra and 
Rani(2021)[5
6] 

Jovc ic  et 
al.[43](202
0) 

Gu l 
(2021b)[46
] 

This 
paper 

Decision-making 
environments 

IFSs FFSs q-ROFSs PFSs SFSs NTSFSs 

Informatio
n 
descriptio
n 

Uncertai
n 

Yes Yes Yes Yes Yes Yes 

Vague Yes Yes Yes Yes Yes Yes 
Random No No No No No Yes 

Defuzzification 
techniques 

Score 
function 

Score 
function 

Score function Score 
function 

Two-
stepdefizzif
i- cation 
method 

Hammin
g 
distance 

Information operation 
laws 

Algebraic Algebraic Algebraic Algebraic Algebraic Aczel-
Alsina 

Whether it considers 
interrelationship of 
any attributes? 

No No No No No Yes 

Decision-making 
flexible  

No No Weak No No Strong 

 
6. Conclusions 
 

In this article, we defined the Hamming distance measure of NTSFNs. The AA operational rules of 
NTSFNs were proposed via combining the advantages of NTSFNs and AA TT. Based on this, the 
NTSFAAHM and NTSFAAWHM operators were developed, and their related properties and special 
cases were discussed. For the NTSF MAGDM problems, then, we defined similarity, constructed MDM 
and extended SWARA approach based on the NTSF Hamming distance under NTSF environment, and 
used them to determine expert weight with regard to attributes, and attribute subjective and 
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objective weight respectively. Further, we improved the ARAS method with the NTSFAAWHM 
operator and NTSF Hamming distance under NTSF environment, which has the ability to capture the 
interrelationship between attributes. Finally, the proposed NTSF ARAS-H method was applied to the 
real case of internet platform investment for waste clothing recycling. The reliability and effectiveness 
of the proposed method were tested via sensitivity and comparative analysis. Therefore, the main 
advantages are as follows: 

(1) Compared with the existing NTSF distance [11], the NTSF Hamming distance we defined 
contains the refusal degree of NTSFN, which makes the measurement result more reasonable. Based 
on this, we defined the similarity, constructed the MDM and improved the SWARA method. 

(2) The NTSFAAHM and NTSFAAWHM operators were developed based on the AA operational 
laws of NTSFNs, which can capture the interrelationship between attributes compared with the 
NTSFWA and NTSFWG operators and have more adjustable parameters than the NTSFWMSM 
operator. 

(3) Compared with the existing ARAS methods, the NTSF ARAS-H method combined the 
NTSFAAWHM operator can not only consider the correlation between attributes, but also make the 
decision process more flexible and reasonable. 

(4) In the NTSF ARAS-H method, we used Hamming distance to calculate the distance between 
each alternative and the ideal solution as the utility degree, which can avoid the loss of some 
information caused by the defuzzification of the optimal function of each alternative. The ARAS-H 
method is more comprehensive and reasonable. 

The ARAS-H method can be well applied to the MAGDM problems in which attribute variables are 
represented by NTSFNs. However, there are still some shortcomings in this method. The NTSFAAWHM 
operator may be computationally complex and difficult when aggregating a large number of input 
arguments. In addition, this operator can only capture two input arguments correlations, but not 
more than two input arguments interrelationships. Therefore, we will consider the input arguments 
hierarchy in the NTSF environment and use the proposed NTSFAAWHM operator for aggregation in 
the future. Furthermore, on the basis of NTSF AA operations, we develop aggregation operators that 
can capture interrelationships of multiple aggregated arguments, such as Hamy mean [71], Muirhead 
mean [31], Maclaurim Symmetric mean [32], etc. At the same time, we will combine the prospect 
theory or regret theory with WASPAS [72], EDAS [73], CoCoSo[74] and MARCOS [75], and then apply 
them to different decision-making scenarios to solve practical problems, such as business decision-
making, capital account selection and emergency decision-making, etc. 
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Appendix A 
Proof: Based on the AA operational rules of NTSFNs in Definition 9, we have 
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Thus, the proof of Theorem 4 is complete. 
 
Appendix B 

(1) (Idempotency) 
Proof: Since i= for alli, we have 
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Thus,    =,
1 2( , , , )s t

nNTSFAAHM . 
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(2) (Boundedness) 
Proof: Since P - =min{i}, according to the idempotency property of NTSFAAHM, we can get 

    
+

= =

+
− −

= =

=

 
=   

+ 

 
   

+ 

= 
+

1

,
1 2

1,

1

1,

2
( , , , )

( 1)

2
                                          ( ) ( )

( 1)

2
                                          

( 1)

n s t
s t s t

n AA i AA j
i j i

n s t
s t

AA AA
i j i

AA
i

NTSFAAHM
n n

P P
n n

n n

+
− + −

=

 
= 

 

1

1,

( )
n s t

s t

j i

P P

 

Similarly, we have NTSFAAHM s,t (1,2,…,n) P+.  
So,   − + ,

1 2( , , , )s t
nP NTSFAAHM P . 

(3) (Monotonicity) 
Proof: Since i≤i*, i≤i*, ii* and ii* for any i, then we can get 
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Then, 
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According to the score function in definition 3, we obtain

       , ,
1 2 1 2( , , , ) ( , , , )s t s t

n nNTSFAAHM NTSFAAHM . 

 
References  
[1] Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31, 343-349. 

https://doi.org/10.1016/S0165-0114(86)80034-3 
[2] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. 

https://doi.org/10.4249/scholarpedia.2031 
[3] Yager, R. R., & Abbasov, A. M. (2013). Pythagorean membership grades, complex numbers, and decision 

making. International journal of intelligent systems, 28(5), 436-452. https://doi.org/10.1002/int.21584 

[4] Yager, R. R. (2017). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25, 1222–1230. 
https://doi.org/10.1109/TFUZZ.2016.2604005 

[5] Cường, B. C. (2014). Picture fuzzy sets. Journal of Computer Science and Cybernetics, 30(4), 409-409.  
https://doi.org/10.15625/1813-9663/30/4/5032 

[6] Mahmood, T., Ullah, K., Khan, Q., & Jan, N. (2019). An approach toward decision-making and medical 
diagnosis problems using the concept of spherical fuzzy sets. Neural Computing and Applications, 31, 
7041-7053. https://doi.org/10.1007/s00521-018-3521-2 

[7] Yang, M. S., & Ko, C. H. (1996). On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy 
sets and systems, 84(1), 49-60.https://doi.org/10.1016/0165-0114(95)00308-8 

[8] Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE transactions on fuzzy systems, 25(5), 1222-
1230.https://doi.org/10.1109/TFUZZ.2016.2604005 

[9] Liu, P. (2017). Multiple attribute decision-making methods based on normal intuitionistic fuzzy 
interaction aggregation operators. Symmetry, 9(11), 261. https://doi.org/10.3390/sym9110261 

[10] Liu, P., & Wang, D. (2022). An extended taxonomy method based on normal T-spherical fuzzy numbers 
for multiple-attribute decision-making. International Journal of Fuzzy Systems, 1-18.  
https://doi.org/10.1007/s40815-021-01109-7 

[11] Liu, P., Wang, D., Zhang, H., Yan, L., Li, Y., & Rong, L. (2021). Multi-attribute decision-making method 
based on normal T-spherical fuzzy aggregation operator. Journal of Intelligent & Fuzzy Systems, 40(5), 
9543-9565. https://doi.org/10.3233/jifs-202000 

[12] Shen, Y., & Chen, W. (2012). Multivariate extension principle and algebraic operations of intuitionistic 
fuzzy sets. Journal of Applied Mathematics, 2012(1), 845090. https://doi.org/10.1155/2012/845090 

[13] Wang, W., & Liu, X. (2011). Intuitionistic fuzzy geometric aggregation operators based on Einstein 
operations. International journal of intelligent systems, 26(11), 1049-1075.  
https://doi.org/10.1002/int.20498 

[14] Özer, Ö. (2022). Hamacher Prioritized Aggregation Operators Based on Complex Picture Fuzzy Sets and 
Their Applications in Decision-Making Problems, Journal of Innovative Research in Mathematical and 
Computational Sciences, 1(1), 33-54.  

[15] Wang, H., & Zhang, F. (2022). Modified WASPAS method based on the pythagorean fuzzy frank 
interaction aggregation operators and its application in cloud computing product selection. Journal of 
Intelligent & Fuzzy Systems, 43(5), 5793-5816. https://doi.org/10.3233/JIFS-213152 

[16] Jana, C., Pal, M., & Wang, J. Q. (2020). Bipolar fuzzy Dombi prioritized aggregation operators in multiple 
attribute decision making. Soft Computing, 24, 3631-3646. https://doi.org/10.1007/s00500-019-04130-
z 

https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.4249/scholarpedia.2031
https://doi.org/10.1002/int.21584
https://doi.org/10.1109/TFUZZ.2016.2604005
https://doi.org/10.15625/1813-9663/30/4/5032
https://doi.org/10.1007/s00521-018-3521-2
https://doi.org/10.1016/0165-0114(95)00308-8
https://doi.org/10.1109/TFUZZ.2016.2604005
https://doi.org/10.3390/sym9110261
https://doi.org/10.1007/s40815-021-01109-7
https://doi.org/10.3233/jifs-202000
https://doi.org/10.1155/2012/845090
https://doi.org/10.1002/int.20498
https://doi.org/10.3233/JIFS-213152
https://doi.org/10.1007/s00500-019-04130-z
https://doi.org/10.1007/s00500-019-04130-z


Computer and Decision Making – An International Journal 

Volume 1, (2024) 279-318 

315 
 
 

 

[17] Hussain, A., Ali, S., & Ullah, K. (2022). A Novel Approach of Picture Fuzzy Sets with Unknown Degree of 
Weights based on Schweizer-Sklar Aggregation Operators, Journal of Innovative Research in 
Mathematical and Computational Sciences, 1(2), 18-39.  

[18] Aczél, J., Alsina, C., 1982. Characterizations of some classes of quasilinear functions with applications to 
triangular norms and to synthesizing judgments. Aequationes Math. 25(1), 313-315.  
https://doi.org/10.1007/bf02189626 

[19] Hussain, A., Ullah, K., Alshahrani, M. N., Yang, M. S., & Pamucar, D. (2022). Novel Aczel–Alsina operators 
for Pythagorean fuzzy sets with application in multi-attribute decision making. Symmetry, 14(5), 940. 
https://doi.org/10.3390/sym14050940 

[20] Senapati, T., Chen, G., & Yager, R. R. (2022). Aczel–Alsina aggregation operators and their application to 
intuitionistic fuzzy multiple attribute decision making. International Journal of Intelligent Systems, 37(2), 
1529-1551. https://doi.org/10.1002/int.22684 

[21] Senapati, T., Chen, G., Mesiar, R., & Yager, R. R. (2022). Novel Aczel–Alsina operations‐based interval‐

valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision‐
making process. International Journal of Intelligent Systems, 37(8), 5059-5081. 
https://doi.org/10.1002/int.22751 

[22] Hussain, A., Ullah, K., Yang, M. S., & Pamucar, D. (2022). Aczel-Alsina aggregation operators on T-
spherical fuzzy (TSF) information with application to TSF multi-attribute decision making. IEEE Access, 10, 
26011-26023. https://doi.org/10.1109/ACCESS.2022.3156764 

[23] Senapati, T. Approaches to multi-attribute decision-making based on picture fuzzy Aczel–Alsina average 
aggregation operators. Comp. Appl. Math. 41, 40 (2022). https://doi.org/10.1007/s40314-021-01742-w 

[24] Naeem, M., Khan, Y., Ashraf, S., Weera, W., Batool, B. 2022. A novel picture fuzzy Aczel-Alsina geometric 
aggregation information: application to determining the factors affecting mango crops. AIMS Math. 7(7), 
12264-12288. https://doi.org/10.3934/math.2022681 

[25] Senapati, T., Chen, G., Mesiar, R., Yager, R. R., & Saha, A. (2022). Novel Aczel–Alsina operations-based 
hesitant fuzzy aggregation operators and their applications in cyclone disaster assessment. International 
Journal of General Systems, 51(5), 511-546.   https://doi.org/10.1080/03081079.2022.2036140 

[26] Fu, J., Ye, J., & Xie, L. (2022). Group Decision-Making Model of Renal Cancer Surgery Options Using 
Entropy Fuzzy Element Aczel-Alsina Weighted Aggregation Operators under the Environment of Fuzzy 
Multi-Sets. CMES-Computer Modeling in Engineering & Sciences, 130(3).   
https://doi.org/10.32604/cmes.2022.018739 

[27] Ye, J., Du, S., & Yong, R. (2022). Aczel–Alsina weighted aggregation operators of neutrosophic z-numbers 
and their multiple attribute decision-making method. International Journal of Fuzzy Systems, 24(5), 2397-
2410. https://doi.org/10.1007/s40815-022-01289-w 

[28] Mahmood, T., ur Rehman, U., & Ali, Z. (2023). Analysis and application of Aczel-Alsina aggregation 
operators based on bipolar complex fuzzy information in multiple attribute decision making. Information 
Sciences, 619, 817-833. https://doi.org/10.1016/j.ins.2022.11.067 

[29] Yager, R. R. (2009). On generalized Bonferroni mean operators for multi-criteria aggregation. 
International Journal of Approximate Reasoning, 50(8), 1279-1286.  
https://doi.org/10.1016/j.ijar.2009.06.004 

[30] Ali, A., Božanić, D., Akram, M., & Ijaz, S. (2022). Heronian Mean Operators Based Multi-Attribute Decision 
Making Algorithm Using T-Spherical Fuzzy Information, Journal of Innovative Research in Mathematical 
and Computational Sciences, 1(1), 55-82. 

[31] Muirhead, R. F. (1902). Some methods applicable to identities and inequalities of symmetric algebraic 
functions of n letters. Proceedings of the Edinburgh Mathematical Society, 21, 144-162. 
https://doi.org/10.1017/S001309150003460X 

[32] Maclaurin, C. (1729). A second letter to Martin Folkes, Esq.; concerning the roots of equations, with 
demonstration of other rules of algebra. Philos. Trans. R. Soc. Lond. Ser. A, 1729(36), 59-96.  

https://doi.org/10.1007/bf02189626
https://doi.org/10.3390/sym14050940
https://doi.org/10.1002/int.22684
https://doi.org/10.1002/int.22751
https://doi.org/10.1109/ACCESS.2022.3156764
https://doi.org/10.1007/s40314-021-01742-w
https://doi.org/10.1080/03081079.2022.2036140
https://doi.org/10.32604/cmes.2022.018739
https://doi.org/10.1007/s40815-022-01289-w
https://doi.org/10.1016/j.ins.2022.11.067
https://doi.org/10.1016/j.ijar.2009.06.004
https://doi.org/10.1017/S001309150003460X


Computer and Decision Making – An International Journal 

Volume 1, (2024) 279-318 

316 
 
 

 

[33] Liu, P., & Li, D. (2017). Some Muirhead mean operators for intuitionistic fuzzy numbers and their 
applications to group decision making. PloS one, 12(1), e0168767.  
https://doi.org/10.1371/journal.pone.0168767 

[34] Yu, D., & Wu, Y. (2012). Interval-valued intuitionistic fuzzy Heronian mean operators and their application 
in multi-criteria decision making. African Journal of Business Management, 6(11), 4158.  
https://doi.org/10.5897/ajbm11.2267 

[35] Wang, H., & Zhang, F. (2022). Interaction power Heronian mean aggregation operators for multiple 
attribute decision making with T-spherical fuzzy information. Journal of Intelligent & Fuzzy Systems, 42(6), 
5715-5739.  https://doi.org/10.3233/jifs-212149 

[36] Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria 

decision ‐ making. Ukio Technologinis Ir Ekonominis Vystymas, 16(2), 159 – 172. 
https://doi.org/10.3846/tede.2010.10 

[37] Liu, N., & Xu, Z. (2021). An overview of ARAS method: Theory development, application extension, and 
future challenge. International Journal of Intelligent Systems, 36(7), 3524-3565.  
https://doi.org/10.1002/int.22425 

[38] Nguyen, H. T., Md Dawal, S. Z., Nukman, Y., P. Rifai, A., & Aoyama, H. (2016). An integrated MCDM model 
for conveyor equipment evaluation and selection in an FMC based on a fuzzy AHP and fuzzy ARAS in the 
presence of vagueness. PloS one, 11(4), e0153222.  https://doi.org/10.1371/journal.pone.0153222 

[39] Rostamzadeh, R., Esmaeili, A., Nia, A. S., Saparauskas, J., & Ghorabaee, M. K. (2017). A fuzzy ARAS method 
for supply chain management performance measurement in SMEs under uncertainty. Transformations 
in Business & Economics, 16. 

[40] Radović, D., Stević, Ž., Pamučar, D., Zavadskas, E. K., Badi, I., Antuchevičiene, J., & Turskis, Z. (2018). 
Measuring performance in transportation companies in developing countries: a novel rough ARAS model. 
Symmetry, 10(10), 434. https://doi.org/10.3390/sym10100434 

[41] Liao, H., Wen, Z., & Liu, L. (2019). Integrating BWM and ARAS under hesitant linguistic environment for 
digital supply chain finance supplier section. Technological and Economic Development of Economy, 25(6), 
1188-1212. https://doi.org/10.3846/tede.2019.10716 

[42] Liu, P., & Cheng, S. (2019). An extension of ARAS methodology for multi-criteria group decision-making 
problems within probability multi-valued neutrosophic sets. International Journal of Fuzzy Systems,21, 
2472-2489. https://doi.org/10.1007/s40815-019-00737-4 

[43] Jovč ić , S., Simić , V., Průša, P., & Dobrodolac, M. (2020). Picture fuzzy ARAS method for freight 
distribution concept selection. Symmetry, 12(7), 1062. https://doi.org/10.3390/sym12071062 

[44] Raj Mishra, A., Sisodia, G., Raj Pardasani, K., & Sharma, K. (2020). Multi-criteria IT personnel selection on 
intuitionistic fuzzy information measures and ARAS methodology. Iranian Journal of Fuzzy Systems, 17(4), 
55-68. https://doi.org/10.22111/IJFS.2020.5406 

[45] Gül, S. (2021). Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID‐19 
testing laboratory selection problem. Expert Systems, 38(8), e12769.  
https://doi.org/10.1111/exsy.12769 

[46] Gül, S. (2021). Extending ARAS with integration of objective attribute weighting under spherical fuzzy 
environment. International Journal of Information Technology & Decision Making, 20(03), 1011-1036. 
https://doi.org/10.1142/S0219622021500267 

[47] Mishra, A. R., & Rani, P. (2023). A q-rung orthopair fuzzy ARAS method based on entropy and 
discrimination measures: an application of sustainable recycling partner selection. Journal of Ambient 
Intelligence and Humanized Computing, 14(6), 6897-6918. https://doi.org/10.1007/s12652-021-03549-
3 

[48] Turskis, Z., & Zavadskas, E. K. (2010). A new fuzzy additive ratio assessment method (ARAS‐F). Case 
study: The analysis of fuzzy multiple criteria in order to select the logistic centers location. Transport, 
25(4), 423-432. https://doi.org/10.3846/transport.2010.52 

https://doi.org/10.1371/journal.pone.0168767
https://doi.org/10.3233/jifs-212149
https://doi.org/10.3846/tede.2010.10
https://doi.org/10.1002/int.22425
https://doi.org/10.1371/journal.pone.0153222
https://doi.org/10.3390/sym10100434
https://doi.org/10.3846/tede.2019.10716
https://doi.org/10.1007/s40815-019-00737-4
https://doi.org/10.3390/sym12071062
https://doi.org/10.22111/IJFS.2020.5406
https://doi.org/10.1111/exsy.12769
https://doi.org/10.1142/S0219622021500267
https://doi.org/10.1007/s12652-021-03549-3
https://doi.org/10.1007/s12652-021-03549-3
https://doi.org/10.3846/transport.2010.52


Computer and Decision Making – An International Journal 

Volume 1, (2024) 279-318 

317 
 
 

 

[49] Zamani, M., Rabbani, A., Yazdani-Chamzini, A., & Turskis, Z. (2014). An integrated model for extending 
brand based on fuzzy ARAS and ANP methods. Journal of Business Economics and Management, 15(3), 
403-423. https://doi.org/10.3846/16111699.2014.923929 

[50] Liao, C. N., Fu, Y. K., & Wu, L. C. (2016). Integrated FAHP, ARAS-F and MSGP methods for green supplier 
evaluation and selection. Technological and Economic Development of Economy, 22(5), 651-669.  
https://doi.org/10.3846/20294913.2015.1072750 

[51] Heidary Dahooie, J., Beheshti Jazan Abadi, E., Vanaki, A. S., & Firoozfar, H. R. (2018). Competency‐based 

IT personnel selection using a hybrid SWARA and ARAS ‐ G methodology. Human Factors and 
Ergonomics in Manufacturing & Service Industries, 28(1), 5-16. https://doi.org/10.1002/hfm.20713 

[52] B ü y ü közkan, G., & Göçer, F. (2018). An extension of ARAS methodology under interval valued 
intuitionistic fuzzy environment for digital supply chain. Applied Soft Computing, 69, 634-
654.https://doi.org/10.1016/j.asoc.2018.04.040 

[53] Iordache, M., Schitea, D., Deveci, M., Akyurt, İ. Z., & Iordache, I. (2019). An integrated ARAS and interval 
type-2 hesitant fuzzy sets method for underground site selection: Seasonal hydrogen storage in salt 
caverns. Journal of Petroleum Science and Engineering, 175, 1088-1098.  
https://doi.org/10.1016/j.petrol.2019.01.051 

[54] ]Dorfeshan, Y., Mousavi, S. M., Zavadskas, E. K., & Antucheviciene, J. (2021). A new enhanced ARAS 
method for critical path selection of engineering projects with interval type-2 fuzzy sets. International 
Journal of Information Technology & Decision Making, 20(01), 37-65. 
https://doi.org/10.1142/S0219622020500418 

[55] Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling 
facility location problems. Applied Soft Computing, 102, 107107.   
https://doi.org/10.1016/j.asoc.2021.107107 

[56] Mishra, A. R., Rani, P., Krishankumar, R., Ravichandran, K. S., & Kar, S. (2021). An extended fuzzy decision-
making framework using hesitant fuzzy sets for the drug selection to treat the mild symptoms of 
Coronavirus Disease 2019 (COVID-19). Applied soft computing, 103, 107155.  
https://doi.org/10.1016/j.asoc.2021.107155 

[57] Mishra, A. R., Rani, P., Cavallaro, F., & Mardani, A. (2022). A similarity measure-based Pythagorean fuzzy 
additive ratio assessment approach and its application to multi-criteria sustainable biomass crop 
selection. Applied Soft Computing, 125, 109201. https://doi.org/10.1016/j.asoc.2022.109201 

[58] Rani, P., Mishra, A. R., Krishankumar, R., Ravichandran, K. S., & Gandomi, A. H. (2020). A new Pythagorean 
fuzzy based decision framework for assessing healthcare waste treatment. IEEE Transactions on 
Engineering Management, 69(6), 2915-2929.   https://doi.org/10.1109/TEM.2020.3023707 

[59] Tanackov, I., Badi, I., Stević, Ž., Pamučar, D., Zavadskas, E. K., & Bausys, R. (2022). A novel hybrid interval 

rough SWARA–interval rough ARAS model for evaluation strategies of cleaner production. Sustainability, 
14(7), 4343. https://doi.org/10.3390/su14074343 

[60] Mishra, A. R., Rani, P., Cavallaro, F., & Hezam, I. M. (2023). Intuitionistic fuzzy fairly operators and additive 
ratio assessment-based integrated model for selecting the optimal sustainable industrial building options. 
Scientific Reports, 13(1), 5055. https://doi.org/10.1038/s41598-023-31843-x 

[61] Teng, F., & Shen, M. (2023). Unbalanced double hierarchy linguistic group decision-making method based 
on SWARA and S-ARAS for multiple attribute group decision-making problems. Artificial Intelligence 
Review, 56(2), 1349-1385. https://doi.org/10.1007/s10462-022-10198-1 

[62] Jaisankar, R., Murugesan, V., Narayanamoorthy, S., Ahmadian, A., Suvitha, K., Ferrara, M., & Kang, D. 
(2023). Integrated MCDM approaches for exploring the ideal therapeutic plastic disposal technology: 
probabilistic hesitant fuzzy domain. Water, Air, & Soil Pollution, 234(2), 71.   
https://doi.org/10.1007/s11270-022-05970-6 

[63] Fan, J., Han, D., & Wu, M. (2023). Picture fuzzy Additive Ratio Assessment Method (ARAS) and 
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method for multi-attribute decision 

https://doi.org/10.3846/16111699.2014.923929
https://doi.org/10.3846/20294913.2015.1072750
https://doi.org/10.1002/hfm.20713
https://doi.org/10.1016/j.asoc.2018.04.040
https://doi.org/10.1016/j.petrol.2019.01.051
https://doi.org/10.1142/S0219622020500418
https://doi.org/10.1016/j.asoc.2021.107107
https://doi.org/10.1016/j.asoc.2021.107155
https://doi.org/10.1016/j.asoc.2022.109201
https://doi.org/10.1109/TEM.2020.3023707
https://doi.org/10.3390/su14074343
https://doi.org/10.1038/s41598-023-31843-x
https://doi.org/10.1007/s10462-022-10198-1
https://doi.org/10.1007/s11270-022-05970-6


Computer and Decision Making – An International Journal 

Volume 1, (2024) 279-318 

318 
 
 

 

problem and their application. Complex & Intelligent Systems, 9(5), 5345-5357.  
https://doi.org/10.1007/s40747-023-01007-5 

[64] Adalı, E. A., Öztaş, T., Özçil, A., Öztaş, G. Z., & Tuş, A. (2023). A new multi-criteria decision-making 
method under neutrosophic environment: ARAS method with single-valued neutrosophic numbers. 
International Journal of Information Technology & Decision Making, 22(01), 57-87. 
https://doi.org/10.1142/S0219622022500456 

[65] Mandal, P., Samanta, S., Pal, M., & Ranadive, A. S. (2020). Pythagorean linguistic preference relations 
and their applications to group decision making using group recommendations based on consistency 
matrices and feedback mechanism. International Journal of Intelligent Systems, 35(5), 826-849.  
https://doi.org/10.1002/int.22226 

[66] Wei, G. W. (2008). Maximizing deviation method for multiple attribute decision making in intuitionistic 
fuzzy setting. Knowledge-Based Systems, 21(8), 833-836.   https://doi.org/10.1016/j.knosys.2008.03.038 

[67] Prajapati, H., Kant, R., & Shankar, R. (2019). Prioritizing the solutions of reverse logistics implementation 
to mitigate its barriers: A hybrid modified SWARA and WASPAS approach. Journal of Cleaner Production, 
240, 118219. https://doi.org/10.1016/j.jclepro.2019.118219 

[68] Kumar, V., Kalita, K., Chatterjee, P., Zavadskas, E. K., & Chakraborty, S. (2022). A SWARA-CoCoSo-based 
approach for spray painting robot selection. Informatica, 33(1), 35-54.https://doi.org/10.15388/21-
INFOR466 

[69] Yang, Z., Li, X., Garg, H., & Qi, M. (2020). Decision support algorithm for selecting an antivirus mask over 
COVID-19 pandemic under spherical normal fuzzy environment. International Journal of Environmental 
Research and Public Health, 17(10), 3407. https://doi.org/10.3390/ijerph17103407 

[70] Temel, T., Aydemir, S. B., & Hoş can, Y. (2022). Power Muirhead mean in spherical normal fuzzy 
environment and its applications to multi-attribute decision-making: Spherical normal fuzzy power 
Muirhead mean. Complex & Intelligent Systems, 8(4), 3523-3541.https://doi.org/10.1007/S40747-022-
00688-8 

[71] Hara, T., Uchiyama, M., & Takahasi, S. E. (1998). A refinement of various mean inequalities. Journal of 
Inequalities and Applications, 1998(4), 932025. https://doi.org/10.1155/s1025583498000253 

[72] Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted 
aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6. 
https://doi.org/10.5755/j01.eee.122.6.1810 

[73] Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory 
classification using a new method of evaluation based on distance from average solution (EDAS). 
Informatica, 26(3), 435-451. https://doi.org/10.15388/INFORMATICA.2015.57 

[74] Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution 
(CoCoSo) method for multi-criteria decision-making problems. Management decision, 57(9), 2501-2519.  
https://doi.org/10.1108/md-05-2017-0458 

[75] Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare 
industries using a new MCDM method: Measurement of alternatives and ranking according to 
COmpromise solution (MARCOS). Computers & industrial engineering, 140, 106231. 
https://doi.org/10.1016/j.cie.2019.106231 

[76] Büyüközkan, G., & Güler, M. (2020). Smart watch evaluation with integrated hesitant fuzzy linguistic 
SAW-ARAS technique. Measurement, 153, 
107353.https://doi.org/10.1016/10.1016/j.measurement.2019.107353 

 
 
 
 
 
 

https://doi.org/10.1007/s40747-023-01007-5
https://doi.org/10.1142/S0219622022500456
https://doi.org/10.1002/int.22226
https://doi.org/10.1016/j.knosys.2008.03.038
https://doi.org/10.1016/j.jclepro.2019.118219
https://doi.org/10.15388/21-INFOR466
https://doi.org/10.15388/21-INFOR466
https://doi.org/10.3390/ijerph17103407
https://doi.org/10.1007/S40747-022-00688-8
https://doi.org/10.1007/S40747-022-00688-8
https://doi.org/10.1155/s1025583498000253
https://doi.org/10.5755/j01.eee.122.6.1810
https://doi.org/10.15388/INFORMATICA.2015.57
https://doi.org/10.1108/md-05-2017-0458
https://doi.org/10.1016/j.cie.2019.106231
https://doi.org/10.1016/10.1016/j.measurement.2019.107353

