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The complex hesitant fuzzy sets which are the extension of hesitant fuzzy sets can 
incorporate Tamir’s complex fuzzy environment which makes them more 
appropriate to model the uncertainty and vagueness involved in real-life 
problems. Some of the traditional similarity measures may not capture all the 
information contained in the hesitant fuzzy set since such measures are often 
simple in handling fuzzy information. This study aims to propose new similarity 
measures under the notion of complex hesitant fuzzy sets. Moreover, we have 
delivered similarity measures and weighted similarity measures for Tamir’s 
complex fuzzy set, hesitant fuzzy set, and complex hesitant fuzzy set for a better 
and more accurate comparison. It also reveals the advantages of the proposed 
measure over existing methods through mathematical derivation and theoretical 
analysis. New similarity measures integrate the merits of CFS and HFS to form a 
powerful tool for comparing datasets with both complexity and hesitancy. The 
proposed measure utilizes Tamir’s complex fuzzy environment to represent 
membership degree; it is thereby capable of managing data that are not well 
handled by current theories. Using theoretical discussions and real-world 
examples such as medical diagnosis and pattern recognition, we show that the 
CHFS-based similarity measure improves the accuracy of decision-making. This 
work not only enriches the theory of fuzzy sets but also provides solutions for 
solving problems containing complex and hesitant data.  
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1. Introduction   

During the decision-making process, a limited set of choices is evaluated based on several factors, 

and alternatives are ranked depending on their perceived correctness to the individual. The individual 

has the responsibility of making a decision, taking into account all relevant criteria collectively. When 

employing this approach, the rating values for every possible solution consider unbiased information 
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from experts in addition to factually accurate information. Conversely, it is widely acknowledged that 

the information they provide is a clear kind. The concept of linguistic variable and its application to 

approximate reasoning is given by Zadeh [1]. The technique of multiple-attribute decision-making 

examines and organizes the range of options in a manner that ensures their reliability and precision 

for the decision-makers [2]. This strategy is employed when each of the criteria is simultaneously 

considered. In the context of this methodology, predictions regarding the evaluation of each 

alternative incorporate both empirical data and expert perspectives. However, it is commonly 

assumed that the information they provide is accurate or up-to-date. The presence of numerous 

multi-attribute decision-making (MADM) difficulties in real-world scenarios can be attributed to the 

inherent uncertainty of the framework. These issues encompass data that is ambiguous, absent, or 

of dubious kind.  

The notion of fuzzy set (FS) has been examined as an approach to handle ambiguity in multi-

attribute decision-making, which is considered an essential concept. To manage it, Zadeh [3] 

originated FSs in 1965 as a modification of traditional set theory. Distance measures (DMs) and 

similarity measures (SMs) both are effective techniques for assessing the level of discrimination 

between the pairs of FSs. Therefore, FSs deal with imprecise data, which is inherent in real-world 

problems including medical diagnosis [4] and pattern recognition [5]. Furthermore, the idea of the 

complex fuzzy set (CFS) has been introduced by Ramot et al. [6] and the range of this structure is a 

unit disc in the complex plan.  

Though FSs describe memberships in a clear-cut manner, CFS uses complex numbers to offer a 

more refined representation of uncertainty [7]. Tamir et al. [8]  contributed by providing a new 

interpretation of the compound membership grade in complex fuzzy sets (CFSs); which has received 

much attention in recent years. By introducing the use of complex numbers into the membership 

function, this new interpretation generalizes the concept of FSs. The capacity of CFS to carry out 

situations at once that include uncertainties of language and numbers is its main advantage. 

Additionally, it also helps to create more realistic models which is the main objective of machine 

learning and therefore it enables the analytical work and the process of decision-making in 

ambiguous or unclear situations more precise and accurate. 

When it comes to making decisions about things, people can sometimes be hesitant, but the ideas 

that have been discussed up till now are unable to account for this particular circumstance. To 

overcome these constraints, Torra [9] presented the hesitant fuzzy set (HFS). The membership 
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function of HFS is defined as several subsets of [0, 1]. Additionally, many real-life challenges have 

been resolved through the utilization of the HFS [10-11]. In decision-making subjects, Farhadinia and 

Herrera-Viedma [12] proposed an MCDM approach based on extended HFS with unknown weights 

data. Alcantud and Giarlotta [13] explored necessary and possible HFS and initiated a novel model 

for decision-making problems. New SMs on certain FSs are also defined by Wang [14]. Chen et al. 

[15] described the comparison of SM of fuzzy values. A new way of approximating fuzzy DM and SM 

among generalized fuzzy numbers was presented by Guha and Chakraborty [16]. Zhang and Fu [17] 

analysed the SMs on three kinds of FSs. Wang et al. [18] proposed a comparative study of similarity 

measures. Boran and Akay proposed bi-parametric similarity measures based on intuitionistic fuzzy 

sets (IFSs) and proposed their application to medical diagnosis [19]. A similarity function to determine 

the degree of similarity among IFSs has been indicated by Chen and Randyanto [20]. Pappis and 

Karacapilidis [21] established a comparative analysis of fuzzy value SM. Lee-Kwang et al. [22] 

introduced the similarity measurements among FSs. The DMs and SMs for HFSs were investigated by 

Xu and Xia [23]. Singha et al. [24] approach carried out the modified DM on HFSs and its relevance in 

multi-criteria decision-making problems. The novel idea by Li et al. [25] involved determining 

distance measures on HFSs by the believability value, and their application in decision-making. A 

novel distance and SMs on HFSs, as well as their applications in multiple criteria decision-making, 

were presented by Li et al. [26]. Rezaei and Rezaei [27] proposed new SMs for HFSs. Novel DMs and 

SMs for HFSs are proposed by Tang et al. [28] one of the simplest ways to define the features between 

two objects is to measure their distance and similarity. In the last couple of years, researchers have 

developed different SMs aiming at the importance of similarity metrics. 

FSs are individual and multi-variable approaches, for example, HFSs normally work fine when the 

uncertainty is single-dimension, but they get challenged when more than one dimension is 

involved. To close this distance, it is proposed the introduction of a new construct: a complex hesitant 

fuzzy set (CHFS). With this framework, membership values are complex numbers. These complex 

degrees of uncertainty shed light on the underpinnings of the complex communication infrastructure 

that was not previously available. CHFS is a suitable method that allows us to yield single solutions 

even in scenarios that are highly detailed with multifaceted aspects. This provides a more 

comprehensive and utility-based approach than the predecessors can offer, as it handles situations 

with the presence of both uncertainty and insecurity dimensions. A fundamental principle within 

human cognition is that of similarity. Three categories are used to group the DM and SM: There are 
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three kinds of distance and similarity measures: 1) the measure based on metrics, 2) the measure 

based on set theory, and 3) the measure based on interpreters. Researchers have put a lot of stress 

on the criteria of similarity between FSs because they play a critical role in the theory of FSs. 

Moreover, the Tamir CFS environment is more valuable and reliable than Ramot’s CFS environment 

because it can cover more data and in Tamir’s CFS environment, the range of membership functions 

belong to the unit square of the complex plan as compared to the Ramot CFS environment in which 

the range of membership function belong to unit disc in complex plane. It means that to handle the 

more advanced and complex information the idea of Tamir’s CFS is more reliable and more advanced 

problems can be handled in this way in which two-dimensional data is involved. Based on these 

observations and the advantages of Tamir’s CFS environment in this article we have proposed the 

idea of     

 Similarity Measures for Complex Fuzzy Sets 

 Similarity Measures for Hesitant Fuzzy Sets 

 Similarity Measures for Complex Hesitant Fuzzy Sets 

 Application of the proposed SMs in pattern recognition and medical diagnosis. 

 The comparative analysis of the proposed work shows the advantages of the delivered approach.   

The rest of the article is arranged as follows, in section 2 we have proposed some basic definitions 

that can help to define the further theory. Section 3 is about the basic SMs based on Tamir’s CFS 

environment. Section 4 is about the idea of SMs based on HFS. In section 5, we have delivered the 

notion of SMs based on the notion of CHFSs. Section 6 is about the application algorithm and the 

utilization of the proposed theory for medical diagnosis and pattern recognition. In section 7 we have 

proposed the comparative analysis of the delivered approach to show the superiority of the 

introduced work. Section 8 is about the concluding remarks.   

2. Preliminaries 

In this section, we reviewed some fundamental notions, including FSs, CFSs, and HFSs. 

Additionally, in this paper, F(𝑋) shows the collection of all FSs, while ₳P̿(ɕ̂) denotes membership 

degree (MD)  in interval [0,1]. Furthermore, 𝑋 will denote the universal set. 

Definition 1: [3] A FS P̿ is of the form 

                                              P̿ = {(ɕ̂, ₳P̿(ɕ̂) )|ɕ̂ϵX} 

file:///C:/Users/rehan/Downloads/CHAP%201.docx%23three


Computer and Decision Making – An International Journal 

Volume 2, (2025) 451-481 

455 
 
 

 

 Where ₳P̿(ɕ̂) denotes the MD and it is restricted to the closed interval [0, 1] . The pair P̿ =

(ɕ̂, ₳P̿(ɕ̂) ) is referred to as a fuzzy number (FN).  

Definition 2: [8] A CFS P̿ is a notion of the form  

P̿ = {(ɕ̂, ₳P̿(ɕ̂)) |ɕ̂ϵX} 

Where ₳P̿(ɕ̂) = ṦP̿(ɕ̂) + ιỮP̿(ɕ̂) is demonstrated the complex-valued MD and ṦP̿(ɕ̂), ỮP̿(ɕ̂) ∈ [0,1] 

and 𝜄 = √−1 . Further the pair P̿ = (ɕ̂, ṦP̿(ɕ̂) + ιỮP̿(ɕ̂)) is called a complex fuzzy number (CFN). 

Definition 3: [9] If  𝑋 is a fixed set then the HFS on 𝑋 can be defined by a function that takes as input 

𝑋 and gives as its output as a subset of [0, 1]. Mathematical representation of HS is given by 

                                                      P̿ = {(ɕ̂, ₳P̿(ɕ̂)|ɕ̂ϵX)} 

Where ₳P̿(ɕ̂) ⊂ [0, 1]. 

Definition 4: [23] Let P ̿and Q̿ be two HFSs on the universal set 𝑋, Ṧ(P̿, Q̿) is a SM among P ̿and Q̿  if 

it satisfied the following conditions 

 (1)  0 ≤ Ṧ(P̿, Q̿) ≤ 1  

(2) Ṧ(P̿, Q̿) = 1 iff P̿ = Q̿  

(3) Ṧ(P̿, Q̿) = Ṧ(Q̿ , P̿)   

Definition 5: [23] Let P̿  and Q̿ be two HFSs on the universal set 𝑋, ↁ(P̿, Q̿) is called DM 

among P ̿and Q̿  if it met the following conditions 

 (1) 0 ≤ ↁ(P̿, Q̿) ≤ 1 

(2) ↁ(P̿, Q̿) = 0 iff P̿ = Q̿  

(3) ↁ(P̿, Q̿) = ↁ(Q̿, P̿)   

Based on the discussion above, it is evident that Ṧ(P̿, Q̿) = 1 − ↁ(P̿, Q̿) 

3. Similarity Measures for Complex Fuzzy Sets 

This section introduces new SMs for Tamir’s CFS environment. These SMs were designed to 

improve CFSs thereby increasing the comfort with which they can be evaluated for accuracy and 

reliability. 

Definition 6: Suppose that P̿ and Q̿  are two CFSs in X where X = {ɕ̂1, ɕ̂2, … ɕ̂n} 

Ṧ(P̿, Q̿) = 1 − [
1

2𝑛(𝑡+1)𝑝
∑ {

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 }

𝑛
𝑖=1 ]

1

𝑝

           

file:///C:/Users/rehan/Downloads/CHAP%201.docx%23nine
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Where 𝑡 = 2,3,4, …  𝑝 = 1,2,3, … and 𝑖 = 1,2,3,… 

Here, there are two parameters, 𝑡 indicates the degree of uncertainty and 𝑝 is the ȴ𝑝 Norm. 

 Theorem 1: Let Ṧ(P̿, Q̿) are the SMs among two CFSs P̿ and Q̿ inX. Then 

 (1) 0 ≤ Ṧ CFS(P̿, Q̿) ≤ 1 

(2) Ṧ CFS(P̿, Q̿) = 1 iff P̿ = Q̿  

(3) Ṧ CFS(P̿, Q̿) = Ṧ CFS(Q,̿ P̿)  

Proof of (1): (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))  ∈ [0,1] and (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖)) ∈ [0,1] then, 

[(ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖)) + (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))] ∈ [0,1] 

This implies that for i = 1 

We have 

[(ṦP̿(ɕ̂1) − ṦQ̿(ɕ̂1)) + (ỮP̿(ɕ̂1) − ỮQ̿(ɕ̂1))] ∈ [0,1] 

For i=2 

[(ṦP̿(ɕ̂2) − ṦQ̿(ɕ̂2)) + (ỮP̿(ɕ̂2) − ỮQ̿(ɕ̂2))] ∈ [0,1] 

By performing this procedure, we acquire 

∑[(ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖)) + (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))]

𝑛

𝑖=1

∈ 𝑛[0,1] 

0 ≤ [∑(
|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|

𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ (2𝑛(𝑡 + 1)𝑝)
1
𝑝 

0 ≤ [
1

2𝑛(𝑡 + 1)𝑝
∑(

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ 1 

−1 ≤ −[
1

2𝑛(𝑡 + 1)𝑝
∑(

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ 0 

0 ≤ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑(

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ 1 

⇒ 0 ≤ Ṧ CFS(P̿, Q̿) ≤ 1 
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Proof of (2): Ṧ CFS(P̿, Q̿) = 1 − [
1

2𝑛(𝑡+1)𝑝
∑ (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛
𝑖=1 ]

1

𝑝

  

Now as P̿ = Q̿   ṦP̿(ɕ̂𝑖) = ṦQ̿(ɕ̂𝑖) for 𝑖 = 1,2, … . , 𝑛 and ỮP̿(ɕ̂𝑖) = ỮQ̿(ɕ̂𝑖) for 𝑖 = 1,2, … . , 𝑛 then 

Ṧ CFS(P̿, Q̿) = 1 − [
1

2𝑛(𝑡 + 1)𝑝
[|1 − 1| + ⋯+ |1 − 1|]]

1
𝑝

 

Ṧ CFS(P̿, Q̿) = 1 − 0 

Ṧ CFS(P̿, Q̿) = 1 

Proof of (3): Ṧ CFS(P̿, Q̿) = 1 − [
1

2𝑛(𝑡+1)𝑝
∑ (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛
𝑖=1 ]

1

𝑝

  

⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑(

|𝑡 (−ṦQ̿(ɕ̂𝑖) + ṦP̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (−ỮQ̿(ɕ̂𝑖) + ỮP̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑(

|𝑡 (−ṦQ̿(ɕ̂𝑖) − ṦP̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (−ỮQ̿(ɕ̂𝑖) − ỮP̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑(

|𝑡 (ṦQ̿(ɕ̂𝑖) − ṦP̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮQ̿(ɕ̂𝑖) − ỮP̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

= Ṧ CFS(Q̿, P̿) 

Ṧ CFS(P̿, Q̿) = Ṧ CFS(Q,̿ P̿) 

Definition 7: Let P̿, Q̿ ∈  CFS(X), we define the WSMs as: 

Ṧ CFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡+1)𝑝
∑ 𝑤𝑖 (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛
𝑖=1 ]

1

𝑝

                   

Where 𝑡 = 2,3,4, …  , 𝑝 = 1,2,3, … and 𝑖 = 1,2,3, … 

Where 𝑤𝑖  is the weight of types (ɕ̂i) wi ∈ [0,1] and  ∑ wi = 1
n
i=1 . 

Theorem 2: Let Ṧ CFS
𝑤 (P̿, Q̿)  is the WSMs among two CFSs P̿ and Q̿ in X. Then 

 (1) 0 ≤ Ṧ CFS
𝑤 (P̿, Q̿)  ≤ 1 

(2) ṦCFS
𝑤 (P̿, Q̿) = 1 iff P̿ = Q̿  
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(3) ṦCFS
𝑤 (P̿, Q̿) = ṦCFS

𝑤 (Q,̿ P̿)  

Proof of (1): (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))  ∈ [0,1] and (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖)) ∈ [0,1]   then,  

[(ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖)) + (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))] ∈ [0,1] 

This implies that for i = 1 

We have 

[(ṦP̿(ɕ̂1) − ṦQ̿(ɕ̂1)) + (ỮP̿(ɕ̂1) − ỮQ̿(ɕ̂1))] ∈ [0,1] 

For i =2 

[(ṦP̿(ɕ̂2) − ṦQ̿(ɕ̂2)) + (ỮP̿(ɕ̂2) − ỮQ̿(ɕ̂2))] ∈ [0,1] 

By performing this procedure, we acquire 

∑[(ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖)) + (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))]

𝑛

𝑖=1

∈ 𝑛[0,1] 

0 ≤ [∑𝑤𝑖 (
|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|

𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ (2𝑤𝑖(𝑡 + 1)
𝑝)
1
𝑝 

0 ≤ [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ 1 

−1 ≤ −[
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ 0 

0 ≤ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

≤ 1 

⇒ 0 ≤ ṦCFS
𝑤 ( P̿, Q̿) ≤ 1 

Proof of (2): ṦCFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡+1)𝑝
∑ 𝑤𝑖 (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛
𝑖=1 ]

1

𝑝

  

Now as P̿ = Q̿   ṦP̿(ɕ̂𝑖) = ṦQ̿(ɕ̂𝑖) for 𝑖 = 1,2, … . , 𝑛 and ỮP̿(ɕ̂𝑖) = ỮQ̿(ɕ̂𝑖) for 𝑖 = 1,2, … . , 𝑛 and 

∑ wi = 1  
n
i=1 then 
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ṦCFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡 + 1)𝑝
[(1)|1 − 1| + (1)|1 − 1| + ⋯(1)|1 − 1|]]

1
𝑝

 

ṦCFS
𝑤 (P̿, Q̿) = 1 − 0 

ṦCFS
𝑤 (P̿, Q̿) = 1 

Proof of (3): ṦCFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡+1)𝑝
∑ 𝑤𝑖 (

|𝑡 (ṦP̿(ɕ̂𝑖) − ṦQ̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿(ɕ̂𝑖) − ỮQ̿(ɕ̂𝑖))|
𝑝 )

𝑛
𝑖=1 ]

1

𝑝

  

⇒ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 (

|𝑡 (−ṦQ̿(ɕ̂𝑖) + ṦP̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (−ỮQ̿(ɕ̂𝑖) + ỮP̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 (

|𝑡 (−ṦQ̿(ɕ̂𝑖) − ṦP̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (−ỮQ̿(ɕ̂𝑖) − ỮP̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 (

|𝑡 (ṦQ̿(ɕ̂𝑖) − ṦP̿(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮQ̿(ɕ̂𝑖) − ỮP̿(ɕ̂𝑖))|
𝑝 )

𝑛

𝑖=1

]

1
𝑝

= ṦCFS
𝑤 (Q,̿ P̿) 

⇒ ṦCFS
𝑤 (P̿, Q̿) = ṦCFS

𝑤 (Q,̿ P̿) 

4. Similarity Measures for Hesitant Fuzzy Sets 

In this section, we have delivered the notion of SMs based on the idea of HFSs. Discussing the 

data in the HFS environment decreases the chance of data loss because in this case, the MD is the 

subset of [0, 1] and more data can be covered. The overall discussion is given by  

Definition 8: Suppose that P̿ and Q̿  are two HFSs in X where X = {ɕ̂1, ɕ̂2, … ɕ̂n} 

Ṧ(P̿, Q̿) = 1 − [
1

𝑛(𝑡+1)𝑝
∑ {

1

ȴ
∑ [|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]ȴ
ɉ=1 }𝑛

𝑖=1 ]

1

𝑝

                        

Where 𝑡 = 2,3,4, …  𝑝 = 1,2,3, … and i = 1,2,3,… 

Here, there are two parameters, t indicates the degree of uncertainty and 𝑝 is the ȴ𝑝 norm. 

Theorem 3: Let Ṧ(P̿, Q̿) is the SMs among two HFSs P̿ and Q̿ in X. Then 

(1)  0 ≤ Ṧ HFS(P̿, Q̿) ≤ 1  

(2) Ṧ HFS(P̿, Q̿) = 1 iff P̿ = Q̿  

(3) Ṧ HFS(P̿, Q̿) = Ṧ HFS(Q,̿ P̿)  
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Proof of (1): 
1

ȴ
∑ (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) ∈ [0,1]
ȴ
ɉ=1    

This implies that for i = 1 

We have 

{
1

ȴ
∑(ṦP̿ɉ(ɕ̂1) − ṦQ̿ɉ(ɕ̂1))

ȴ

ɉ=1

} ∈ [0,1] 

For i=2 

{
1

ȴ
∑(ṦP̿ɉ(ɕ̂2) − ṦQ̿ɉ(ɕ̂2))

ȴ

ɉ=1

} ∈ [0,1] 

By performing this procedure, we acquire 

[∑{
1

ȴ
∑(ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))

ȴ

ɉ=1

}

𝑛

𝑖=1

] ∈ 𝑛[0,1] 

0 ≤ [∑{
1

ȴ
∑|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝
ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ (𝑛(𝑡 + 1)𝑝)
1
𝑝 

0 ≤ [
1

𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝
ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 1 

−1 ≤ −[
1

𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 0 

0 ≤ 1 − [
1

𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 1 

⇒ 0 ≤ Ṧ
 ἬF̅S ̈

(P̿, Q̿) ≤ 1 

Proof of (2): Ṧ
 ἬF̅S ̈

(P̿, Q̿) = 1 −

[
 
 
 
 
 

1

(𝑡+1)𝑝
∑

{
 
 

 
 

1

ȴ

[
 
 
 
 
 |𝑡 (ṦP̿1(ɕ̂𝑖) − ṦQ̿1(ɕ̂𝑖))|

𝑝
+

|𝑡 (ṦP̿2(ɕ̂𝑖) − ṦQ̿2(ɕ̂𝑖))|
𝑝
+⋯+

|𝑡 (ṦP̿ȴ(ɕ̂𝑖) − ṦQ̿ȴ(ɕ̂𝑖))|
𝑝

 ]
 
 
 
 
 

}
 
 

 
 

𝑛
𝑖=1

]
 
 
 
 
 

1

𝑝
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⇒ 1 −

[
 
 
 
 
 

1

𝑛(𝑡 + 1)𝑝

{
 
 

 
 
1

ȴ

[
 
 
 
 
 |t (ṦP̿1(ɕ̂1) − ṦQ̿1(ɕ̂1))|

p
+

|t (ṦP̿2(ɕ̂1) − ṦQ̿2(ɕ̂1))|
p
+

…+ |t (ṦP̿ȴ(ɕ̂1) − ṦQ̿ȴ(ɕ̂1))|
p

]
 
 
 
 
 

+
1

ȴ

[
 
 
 
 
 |t (ṦP̿1(ɕ̂2) − ṦQ̿1(ɕ̂2))|

p
+

|t (ṦP̿2(ɕ̂2) − ṦQ̿2(ɕ̂2))|
p
+

…+ |t (ṦP̿ȴ(ɕ̂2) − ṦQ̿ȴ(ɕ̂2))|
p

]
 
 
 
 
 

+
1

ȴ

[
 
 
 
 
 |t (ṦP̿1(ɕ̂𝑛) − ṦQ̿1(ɕ̂𝑛))|

p
+

|t (ṦP̿2(ɕ̂𝑛) − ṦQ̿2(ɕ̂𝑛))|
p
+

…+ |t (ṦP̿ȴ(ɕ̂𝑛) − ṦQ̿ȴ(ɕ̂𝑛))|
p

]
 
 
 
 
 

}
 
 

 
 

]
 
 
 
 
 

1
𝑝

 

Now as P̿ɉ = Q̿ɉ   ṦP̿ɉ(ɕ̂𝑖) = ṦQ̿ɉ(ɕ̂𝑖), for ɉ = 1,2,… , 𝑛 and 𝑖 = 1,2, … . , 𝑛 and ỮP̿ɉ(ɕ̂𝑖) = ỮQ̿𝑗(ɕ̂𝑖) for ɉ =

1,2, … , 𝑛 and  𝑖 = 1,2, … , 𝑛  

Ṧ HFS(P̿, Q̿) = 1 − [
1

𝑛(𝑡 + 1)𝑝
{
1

ȴ
[(1)|1 − 1| + ⋯+ (1)|1 − 1|]}]

1
𝑝

 

Ṧ HFS(P̿, Q̿) = 1 − 0 

Ṧ HFS(P̿, Q̿) = 1 

Proof of (3): Ṧ HFS(P̿, Q̿) = 1 − [
1

𝑛(𝑡+1)𝑝
∑ {

1

ȴ
∑ [|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]ȴ
𝑗=1 }𝑛

𝑖=1 ]

1

𝑝

  

⇒ 1 − [
1

𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) + ṦP̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[|𝑡 (ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

= Ṧ HFS(Q,̿ P̿) 

⇒ Ṧ HFS(P̿, Q̿) = Ṧ HFS(Q,̿ P̿) 

Definition 9: Let P̿, Q̿ ∈  HFS(X), we define the WSMs as: 

Ṧ HFS
𝑤 (P̿, Q̿) = 1 − [

1

(𝑡+1)𝑝
∑ 𝑤𝑖 {

1

ȴ
∑ [|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]ȴ
ɉ=1 }𝑛

𝑖=1 ]

1

𝑝

                     

Where 𝑡 = 2,3,4, …  𝑝 = 1,2,3, … and 𝑖 = 1,2,3,…, 𝑤𝑖 is the weight of types (ɕ̂i) wi ∈ [0,1] and 

∑ wi = 1
n
i=1 . 
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Here, there are two parameters, t indicates the degree of uncertainty and 𝑝 is the ȴ𝑝 norm. 

Theorem 4: Let Ṧ HFS
𝑤 (P̿, Q̿)  is the WSMs among two HFSs P̿ and Q̿ in X. Then 

 (1)  0 ≤ ṦHFS
𝑤 (P̿, Q̿) ≤ 1 

(2) ṦHFS
𝑤 (P̿, Q̿) = 1 iff P̿ = Q̿  

(3) ṦHFS
𝑤 (P̿, Q̿) = ṦHFS

𝑤 (Q,̿ P̿)  

Proof of (1):  
1

ȴ
∑ (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) ∈ [0,1]
ȴ
ɉ=1  then  

This implies that for i = 1 

We have 

{
1

ȴ
∑(ṦP̿ɉ(ɕ̂1) − ṦQ̿ɉ(ɕ̂1))

ȴ

ɉ=1

} ∈ [0,1] 

For i=2 

{
1

ȴ
∑(ṦP̿ɉ(ɕ̂2) − ṦQ̿ɉ(ɕ̂2))

ȴ

ɉ=1

} ∈ [0,1] 

 By performing this procedure, we acquire 

[∑{
1

ȴ
∑(ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))

ȴ

ɉ=1

}

𝑛

𝑖=1

] ∈ 𝑛[0,1] 

0 ≤ [∑{
1

ȴ
∑|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝
ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ (𝑤𝑖(𝑡 + 1)
𝑝)
1
𝑝 

0 ≤ [
1

(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝
ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 1 

−1 ≤ −[
1

(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 0 

0 ≤ 1 − [
1

𝑛(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 1 

0 ≤ ṦHFS
𝑤 (P̿, Q̿) ≤ 1 
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Proof of (2): ṦHFS
𝑤 (P̿, Q̿) = 1 −

[
 
 
 
 
 

1

(𝑡+1)𝑝
∑ 𝑤𝑖

{
 
 

 
 

1

ȴ

[
 
 
 
 
 |𝑡 (ṦP̿1(ɕ̂𝑖) − ṦQ̿1(ɕ̂𝑖))|

𝑝
+

|𝑡 (ṦP̿2(ɕ̂𝑖) − ṦQ̿2(ɕ̂𝑖))|
𝑝
+⋯+

|𝑡 (ṦP̿ȴ(ɕ̂𝑖) − ṦQ̿ȴ(ɕ̂𝑖))|
𝑝

 ]
 
 
 
 
 

}
 
 

 
 

𝑛
𝑖=1

]
 
 
 
 
 

1

𝑝

  

⇒ 1 −

[
 
 
 
 
 

1

(𝑡 + 1)𝑝
𝑤𝑖

{
 
 

 
 
1

ȴ

[
 
 
 
 
 |t (ṦP̿1(ɕ̂1) − ṦQ̿1(ɕ̂1))|

p
+

|t (ṦP̿2(ɕ̂1) − ṦQ̿2(ɕ̂1))|
p
+

…+ |t (ṦP̿ȴ(ɕ̂1) − ṦQ̿ȴ(ɕ̂1))|
p

]
 
 
 
 
 

+
1

ȴ

[
 
 
 
 
 |t (ṦP̿1(ɕ̂2) − ṦQ̿1(ɕ̂2))|

p
+

|t (ṦP̿2(ɕ̂2) − ṦQ̿2(ɕ̂2))|
p
+

…+ |t (ṦP̿ȴ(ɕ̂2) − ṦQ̿ȴ(ɕ̂2))|
p

]
 
 
 
 
 

+
1

ȴ

[
 
 
 
 
 |t (ṦP̿1(ɕ̂𝑛) − ṦQ̿1(ɕ̂𝑛))|

p
+

|t (ṦP̿2(ɕ̂𝑛) − ṦQ̿2(ɕ̂𝑛))|
p
+

…+ |t (ṦP̿ȴ(ɕ̂𝑛) − ṦQ̿ȴ(ɕ̂𝑛))|
p

]
 
 
 
 
 

}
 
 

 
 

]
 
 
 
 
 

1
𝑝

 

Now as P̿ɉ = Q̿ɉ   ṦP̿ɉ(ɕ̂𝑖) = ṦQ̿ɉ(ɕ̂𝑖), for ɉ = 1,2,… , 𝑛 and 𝑖 = 1,2, … . , 𝑛 and ỮP̿ɉ(ɕ̂𝑖) = ỮQ̿𝑗(ɕ̂𝑖) for ɉ =

1,2, … , 𝑛 and  𝑖 = 1,2, … , 𝑛  

ṦHFS
𝑤 (P̿, Q̿) = 1 − [

1

(𝑡 + 1)𝑝
{
1

ȴ
[(1)|1 − 1| + ⋯+ (1)|1 − 1|]}]

1
𝑝

 

ṦHFS
𝑤 (P̿, Q̿) = 1 − 0 

ṦHFS
𝑤 (P̿, Q̿) = 1 

𝐏𝐫𝐨𝐨𝐟 𝐨𝐟 (𝟑): ṦHFS
𝑤 (P̿, Q̿) = 1 − [

1

(𝑡+1)𝑝
∑ 𝑤𝑖 {

1

ȴ
∑ [|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|

𝑝

]ȴ
𝑗=1 }𝑛

𝑖=1 ]

1

𝑝

  

⇒ 1 − [
1

(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) + ṦP̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[|𝑡 (ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|

𝑝

]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

= ṦHFS
𝑤 (Q,̿ P̿) 

ṦHFS
𝑤 (P̿, Q̿) = ṦHFS

𝑤 (Q,̿ P̿) 

5. Similarity Measures for Complex Hesitant Fuzzy Sets 

The idea of CHFS have been developed by Albaity et al. [29]. As SMs are an inherent concept of 

people’s perception. SMs have applications in several areas inclusive of pattern recognition and 
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medical diagnosis. This section introduces new SMs for CHFSs. The basic definition of CHFS is given 

by   

Definition 10: [29] A complex hesitant fuzzy set is of the procedure P̿ = {(ɕ̂, ₳P̿(ɕ̂)) |ɕ̂𝜖𝑋} where 

₳P̿(ɕ̂) is demonstrated by the finite subset of complex-valued membership grades within the unit 

square in a complex plan. Where ₳P̿(ɕ̂) = {( ṦP̿(ɕ̂) + ιỮP̿(ɕ̂))} and ṦP̿(ɕ̂), ỮP̿(ɕ̂) ∈ [0,1] and 𝜄 =

√−1 

Definition 11: Assume that P̿ and Q̿  are two CHFSs in X where X = {ɕ̂1, ɕ̂2, … ɕ̂n} 

Ṧ(P̿, Q̿) = 1 − [
1

2𝑛(𝑡+1)𝑝
∑ {

1

ȴ
∑ [

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ
ɉ=1 }𝑛

𝑖=1 ]

1

𝑝

                     

Where 𝑡 = 2,3,4, …  𝑝 = 1,2,3, … and 𝑖 = 1,2,3,… 

Here, there are two parameters, t indicates the degree of uncertainty and 𝑝 is the ȴ𝑝 norm. 

Theorem 5: Let Ṧ(P̿, Q̿) is the SMs among two CHFSs P̿ and Q̿ in X. Then 

(1) 0 ≤ Ṧ CHFS( P̿, Q̿) ≤ 1  

(2) Ṧ CHFS(P̿, Q̿) = 1 iff P̿ = Q̿  

(3) Ṧ CHFS(P̿, Q̿) = Ṧ CHFS(Q,̿ P̿)  

Proof of (1):  
1

ȴ
∑ (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) ∈ [0,1]
ȴ
ɉ=1   and 

1

ȴ
∑ (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖)) ∈ [0,1]
ȴ
ɉ=1    then  

1

ȴ
∑[(ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) + (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))]

ȴ

ɉ=1

∈ [0,1] 

This implies that for i = 1 

We have 

{
1

ȴ
∑[(ṦP̿ɉ(ɕ̂1) − ṦQ̿ɉ(ɕ̂1)) + (ỮP̿ɉ(ɕ̂1) − ỮQ̿ɉ(ɕ̂1))]

ȴ

ɉ=1

} ∈ [0,1] 

For i=2 

{
1

ȴ
∑[(ṦP̿ɉ(ɕ̂2) − ṦQ̿ɉ(ɕ̂2)) + (ỮP̿ɉ(ɕ̂2) − ỮQ̿ɉ(ɕ̂2))]

ȴ

ɉ=1

} ∈ [0,1] 

By performing this procedure, we acquire 
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[∑{
1

ȴ
∑[(ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) + (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))]

ȴ

ɉ=1

}

𝑛

𝑖=1

] ∈ 𝑛[0,1] 

0 ≤ [∑{
1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ (2𝑛(𝑡 + 1)𝑝)
1
𝑝 

0 ≤ [
1

2𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 1 

−1 ≤ −[
1

2𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 0 

0 ≤ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ 1 

⇒ 0 ≤ Ṧ CHFS(P̿, Q̿) ≤ 1 

Proof of (2): Ṧ CHFS(P̿, Q̿) = 1 −

[
 
 
 
 
 
 
 
 
 
 
 

1

2𝑛(𝑡+1)𝑝
∑

{
 
 
 
 
 

 
 
 
 
 

1

ȴ

[
 
 
 
 
 
 
 
 
 
 
 |𝑡 (ṦP̿1(ɕ̂𝑖) − ṦQ̿1(ɕ̂𝑖))|

𝑝
+

|𝑡 (ṦP̿2(ɕ̂𝑖) − ṦQ̿2(ɕ̂𝑖))|
𝑝
+⋯+

|𝑡 (ṦP̿ȴ(ɕ̂𝑖) − ṦQ̿ȴ(ɕ̂𝑖))|
𝑝

+ |𝑡 (ỮP̿1(ɕ̂𝑖) − ỮQ̿1(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿2(ɕ̂𝑖) − ỮQ̿2(ɕ̂𝑖))|
𝑝
+⋯+

|𝑡 (ỮP̿ȴ(ɕ̂𝑖) − ỮQ̿ȴ(ɕ̂𝑖))|
𝑝

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

𝑛
𝑖=1

]
 
 
 
 
 
 
 
 
 
 
 

1

𝑝
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⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
{
1

ȴ
[|t (ṦP̿1(ɕ̂1) − ṦQ̿1(ɕ̂1))|

p
+ |t (ṦP̿2(ɕ̂1) − ṦQ̿2(ɕ̂1))|

p
+⋯

+ |t (ṦP̿ȴ(ɕ̂1) − ṦQ̿ȴ(ɕ̂1))|
p

+ |t (ỮP̿1(ɕ̂1) − ỮQ̿1(ɕ̂1))|
p
+ |t (ỮP̿2(ɕ̂1) − ỮQ̿2(ɕ̂1))|

p

+⋯+ |t (ỮP̿ȴ(ɕ̂1) − ỮQ̿ȴ(ɕ̂1))|
p

]

+
1

ȴ
[|t (ṦP̿1(ɕ̂2) − ṦQ̿1(ɕ̂2))|

p
+ |t (ṦP̿2(ɕ̂2) − ṦQ̿2(ɕ̂2))|

p
+⋯

+ |t (ṦP̿ȴ(ɕ̂2) − ṦQ̿ȴ(ɕ̂2))|
p

+ |t (ỮP̿1(ɕ̂2) − ỮQ̿1(ɕ̂2))|
p
+ |t (ỮP̿2(ɕ̂2) − ỮQ̿2(ɕ̂2))|

p

+⋯+ |t (ỮP̿ȴ(ɕ̂2) − ỮQ̿ȴ(ɕ̂2))|
p

] + ⋯

+
1

ȴ
[|t (ṦP̿1(ɕ̂𝑛) − ṦQ̿1(ɕ̂𝑛))|

p
+ |t (ṦP̿2(ɕ̂𝑛) − ṦQ̿2(ɕ̂𝑛))|

p
+⋯

+ |t (ṦP̿ȴ(ɕ̂1) − ṦQ̿ȴ(ɕ̂1))|
p

+ |t (ỮP̿1(ɕ̂𝑛) − ỮQ̿1(ɕ̂𝑛))|
p

+ |t (ỮP̿2(ɕ̂𝑛) − ỮQ̿2(ɕ̂𝑛 ))|
p
+⋯+ |t (ỮP̿ȴ(ɕ̂𝑛) − ỮQ̿ȴ(ɕ̂𝑛))|

p

]}]

1
𝑝

 

Now as P̿ɉ = Q̿ɉ   ṦP̿ɉ(ɕ̂𝑖) = ṦQ̿ɉ(ɕ̂𝑖), for ɉ = 1,2,… , 𝑛 and 𝑖 = 1,2, … , 𝑛 and ỮP̿ɉ(ɕ̂𝑖) = ỮQ̿𝑗(ɕ̂𝑖) for ɉ =

1,2, … , 𝑛 and  𝑖 = 1,2, … . , 𝑛 then 

Ṧ CHFS(P̿, Q̿) = 1 − [
1

2𝑛(𝑡 + 1)𝑝
{
1

ȴ
[|1 − 1| + |1 − 1| + ⋯ |1 − 1|]}]

1
𝑝

 

Ṧ CHFS(P̿, Q̿) = 1 − 0 

ṦCHFS(P̿, Q̿) = 1 

𝐏𝐫𝐨𝐨𝐟 𝐨𝐟 (𝟑):  Ṧ CHFS(P̿, Q̿) = 1 − [
1

2𝑛(𝑡+1)𝑝
∑ {

1

ȴ
∑ [

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ
𝑗=1 }𝑛

𝑖=1 ]

1

𝑝

  

⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[

|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) + ṦP̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (−ỮQ̿ɉ(ɕ̂𝑖) + ỮP̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[

|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (−ỮQ̿ɉ(ɕ̂𝑖) − ỮP̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝
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⇒ 1 − [
1

2𝑛(𝑡 + 1)𝑝
∑{

1

ȴ
∑[

|𝑡 (ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (ỮQ̿ɉ(ɕ̂𝑖) − ỮP̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

= Ṧ CHFS(Q,̿ P̿) 

⇒ Ṧ CHFS(P̿, Q̿) = Ṧ CHFS(Q,̿ P̿) 

 Definition 13: Let P̿, Q̿ ∈  CHFS(X), we define the WSMs as: 

Ṧ CHFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡+1)𝑝
∑ 𝑤𝑖 {

1

ȴ
∑ [

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ
ɉ=1 }𝑛

𝑖=1 ]

1

𝑝

                

Where 𝑡 = 2,3,4, … 𝑝 = 1,2,3, … and 𝑖 = 1,2,3,…,where 𝑤𝑖 is the weight of types (ɕ̂i) wi ∈ [0,1] and 

∑ wi = 1
n
i=1 . 

Theorem 6: Let Ṧ CHFS
𝑤 (P̿, Q̿)  is WSMs among two CHFSs P̿ and Q̿ in X. Then 

 (1) 0 ≤ ṦCHFS
𝑤 (P̿, Q̿) ≤ 1 

(2) ṦCHFS
𝑤 (P̿, Q̿) = 1 iff P̿ = Q̿  

(3) ṦCHFS
𝑤 (P̿, Q̿) = ṦCHFS

𝑤 (Q,̿ P̿)  

Proof of (1): 
1

ȴ
∑ (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))  ∈ [0,1]
ȴ
ɉ=1   and 

1

ȴ
∑ (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖)) ∈ [0,1]
ȴ
ɉ=1    then  

1

ȴ
∑[(ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) + (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))]

ȴ

ɉ=1

∈ [0,1] 

This implies that for i = 1 

We have 

{
1

ȴ
∑[(ṦP̿ɉ(ɕ̂1) − ṦQ̿ɉ(ɕ̂1)) + (ỮP̿ɉ(ɕ̂1) − ỮQ̿ɉ(ɕ̂1))]

ȴ

ɉ=1

} ∈ [0,1] 

For i=2 

{
1

ȴ
∑[(ṦP̿ɉ(ɕ̂2) − ṦQ̿ɉ(ɕ̂2)) + (ỮP̿ɉ(ɕ̂2) − ỮQ̿ɉ(ɕ̂2))]

ȴ

ɉ=1

} ∈ [0,1] 

By performing this procedure, we acquire 

[∑{
1

ȴ
∑[(ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖)) + (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))]

ȴ

ɉ=1

}

𝑛

𝑖=1

] ∈ 𝑛[0,1] 
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0 ≤ [∑𝑤𝑖 {
1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}

𝑛

𝑖=1

]

1
𝑝

≤ (2𝑤𝑖(𝑡 + 1)
𝑝)
1
𝑝 

0 ≤ [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖

𝑛

𝑖=1

{
1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}]

1
𝑝

≤ 1 

−1 ≤ −[
1

2(𝑡 + 1)𝑝
∑𝑤𝑖

𝑛

𝑖=1

{
1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}]

1
𝑝

≤ 0 

0 ≤ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖

𝑛

𝑖=1

{
1

ȴ
∑[

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+

|𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝 ]

ȴ

ɉ=1

}]

1
𝑝

≤ 1 

⇒ 0 ≤ ṦCHFS
𝑤  ( P̿, Q̿)  ≤ 1 

Proof of (2): Ṧ CHFS(P̿, Q̿) = 1 −

[
 
 
 
 
 
 
 
 
 
 
 

1

2(𝑡+1)𝑝
∑ 𝑤𝑖

{
 
 
 
 
 

 
 
 
 
 

1

ȴ

[
 
 
 
 
 
 
 
 
 
 
 |𝑡 (ṦP̿1(ɕ̂𝑖) − ṦQ̿1(ɕ̂𝑖))|

𝑝
+

|𝑡 (ṦP̿2(ɕ̂𝑖) − ṦQ̿2(ɕ̂𝑖))|
𝑝
+⋯+

|𝑡 (ṦP̿ȴ(ɕ̂𝑖) − ṦQ̿ȴ(ɕ̂𝑖))|
𝑝

+ |𝑡 (ỮP̿1(ɕ̂𝑖) − ỮQ̿1(ɕ̂𝑖))|
𝑝
+

|𝑡 (ỮP̿2(ɕ̂𝑖) − ỮQ̿2(ɕ̂𝑖))|
𝑝
+⋯+

|𝑡 (ỮP̿ȴ(ɕ̂𝑖) − ỮQ̿ȴ(ɕ̂𝑖))|
𝑝

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

𝑛
𝑖=1

]
 
 
 
 
 
 
 
 
 
 
 

1

𝑝
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⇒ 1 − [
1

2(𝑡 + 1)𝑝
{
1

ȴ
𝑤1 [|t (ṦP̿1(ɕ̂1) − ṦQ̿1(ɕ̂1))|

p
+ |t (ṦP̿2(ɕ̂1) − ṦQ̿2(ɕ̂1))|

p
+⋯

+ |t (ṦP̿ȴ(ɕ̂1) − ṦQ̿ȴ(ɕ̂1))|
p

+ |t (ỮP̿1(ɕ̂1) − ỮQ̿1(ɕ̂1))|
p
+ |t (ỮP̿2(ɕ̂1) − ỮQ̿2(ɕ̂1))|

p

+⋯+ |t (ỮP̿ȴ(ɕ̂1) − ỮQ̿ȴ(ɕ̂1))|
p

]

+
1

ȴ
𝑤2 [|t (ṦP̿1(ɕ̂2) − ṦQ̿1(ɕ̂2))|

p
+ |t (ṦP̿2(ɕ̂2) − ṦQ̿2(ɕ̂2))|

p
+⋯

+ |t (ṦP̿ȴ(ɕ̂2) − ṦQ̿ȴ(ɕ̂2))|
p

+ |t (ỮP̿1(ɕ̂2) − ỮQ̿1(ɕ̂2))|
p
+ |t (ỮP̿2(ɕ̂2) − ỮQ̿2(ɕ̂2))|

p

+⋯+ |t (ỮP̿ȴ(ɕ̂2) − ỮQ̿ȴ(ɕ̂2))|
p

] + ⋯

+
1

ȴ
𝑤𝑛 [|t (ṦP̿1(ɕ̂𝑛) − ṦQ̿1(ɕ̂𝑛))|

p
+ |t (ṦP̿2(ɕ̂𝑛) − ṦQ̿2(ɕ̂𝑛))|

p
+⋯

+ |t (ṦP̿ȴ(ɕ̂1) − ṦQ̿ȴ(ɕ̂1))|
p

+ |t (ỮP̿1(ɕ̂𝑛) − ỮQ̿1(ɕ̂𝑛))|
p

+ |t (ỮP̿2(ɕ̂𝑛) − ỮQ̿2(ɕ̂𝑛 ))|
p
+⋯+ |t (ỮP̿ȴ(ɕ̂𝑛) − ỮQ̿ȴ(ɕ̂𝑛))|

p

]}]

1
𝑝

 

Now as P̿ɉ = Q̿ɉ   ṦP̿ɉ(ɕ̂𝑖) = ṦQ̿ɉ(ɕ̂𝑖), for ɉ = 1,2,… , 𝑛 and 𝑖 = 1,2, … . , 𝑛 and ỮP̿ɉ(ɕ̂𝑖) = ỮQ̿𝑗(ɕ̂𝑖) for ɉ =

1,2, … , 𝑛 and  𝑖 = 1,2, … , 𝑛, where 𝑤𝑖  is the weight of features (Xi) wi ∈ [0,1] and ∑ wi = 1
n
i=1  then 

ṦCHFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡 + 1)𝑝
{
1

ȴ
[(1)|1 − 1| + (1)|1 − 1| + ⋯(1)|1 − 1|]}]

1
𝑝

 

ṦCHFS
𝑤 (P̿, Q̿) = 1 − 0 

ṦCHFS
𝑤 (P̿, Q̿) = 1 

𝐏𝐫𝐨𝐨𝐟 𝐨𝐟 (𝟑):    ṦCHFS
𝑤 (P̿, Q̿) = 1 − [

1

2(𝑡+1)𝑝
∑ 𝑤𝑖
𝑛
𝑖=1 {

1

ȴ
∑ [

|𝑡 (ṦP̿ɉ(ɕ̂𝑖) − ṦQ̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (ỮP̿ɉ(ɕ̂𝑖) − ỮQ̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ
𝑗=1 }]

1

𝑝

  

⇒ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[

|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) + ṦP̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (−ỮQ̿ɉ(ɕ̂𝑖) + ỮP̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

 

⇒ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[

|𝑡 (−ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (−ỮQ̿ɉ(ɕ̂𝑖) − ỮP̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝
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⇒ 1 − [
1

2(𝑡 + 1)𝑝
∑𝑤𝑖 {

1

ȴ
∑[

|𝑡 (ṦQ̿ɉ(ɕ̂𝑖) − ṦP̿ɉ(ɕ̂𝑖))|
𝑝

+ |𝑡 (ỮQ̿ɉ(ɕ̂𝑖) − ỮP̿ɉ(ɕ̂𝑖))|
𝑝]

ȴ

𝑗=1

}

𝑛

𝑖=1

]

1
𝑝

= ṦCHFS
𝑤 (Q,̿ P̿) 

⇒ ṦCHFS
𝑤 (P̿, Q̿) = ṦCHFS

𝑤 (Q,̿ P̿) 

6. Applications 

In this section, the suggested SMs for CHFSs are used for medical diagnosis and pattern 

recognition. We present the following example to illustrate this. 

6.1. Application in Medical Diagnosis 

The manifestations of various illnesses are different. The medical diagnosis involves the 

identification of symptoms that point to the sort of illness a victim has contracted. The several signs 

in a victim is a sign set and a set of illnesses can be represented by different illnesses. 

Step 1: Define the set of symptoms X and the set of illness P. Each illness is signified as HFN. 

Step 2: Calculate SMs among the victim's symptoms Q̿ and each illness P̿ɕ̂(ɕ̂  =  1, 2, 3, 4 ). 

Step 3: Calculate the degree of SMs among the victim's symptoms Q̿ and each illness using proposed 

SMs according to the definition 11. 

Step 4: Rank the illness according to the most similar to the victim's symptoms Q̿. 

Step 5: Find the illness with the highest degree of SMs among the victim's symptoms Q̿. 

Step 6: End 

Example 1: Assume that a set of diagnosis  

P̿ = {P̿1(pneumonia), P̿2(Flu), P̿3(Malaria), P̿4(Diarrhea)} 

 and the set of symptoms  X = {ɕ̂1(shallow breathing), ɕ̂2(cough), ɕ̂3(Fever), ɕ̂4(Bloating)}  

The victim's symptoms may manifest as CHFSs in the following ways: 

Q̿ = {
(ɕ̂1, {0.61 + 0.92𝜄, 0.77 + 0.81𝜄}), (ɕ̂2, {0.43 + 0.52𝜄, 0.76 + 0.88𝜄}),
(ɕ̂3, {0.22 + 0.91𝚤, 0.56 + 0.67𝚤}), (ɕ̂4, {0.72 + 0.48𝚤, 0.67 + 0.85𝚤})

} 

The indications of every illness P̿ɕ̂(ɕ̂  =  1, 2, 3, 4 ) are expressed as CHFSs as follows: 

P̿1(pneumonia) = {
(ɕ̂1, {0.27 + 0.66ι, 0.52 + 0.91ι}), (ɕ̂2, {0.57 + 0.88ι, 0.29 + 0.62ι})

(ɕ̂3, {0.66 + 0.82ι, 0.58 + 0.68ι}), (ɕ̂4, {0.43 + 0.65ι, 0.33 + 0.41ι})
} 

P̿2(Flu) = {
(ɕ̂1, {0.33 + 0.67ι, 0.12 + 0.27ι}), (ɕ̂2, {0.72 + 0.89ι, 0.42 + 0.90ι}),
(ɕ̂3, {0.11 + 0.34ι, 0.25 + 0.99ι}), (ɕ̂4, {0.49 + 0.78ι, 0.86 + 0.79ι})

} 

P̿3(Malaria) = {
(ɕ̂1, {0.21 + 0.39ι, 0.27 + 0.87ι}), (ɕ̂2, {0.41 + 0.44ι, 0.39 + 0.48ι}),
(ɕ̂3, {0.50 + 0.71ι, 0.33 + 0.69 ι}), (ɕ̂4, {0.42 + 0.61ι, 0.55 + 0.69ι})

} 
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P̿4(Diarrhea) = {
(ɕ̂1, {0.72 + 0.79ι, 0.40 + 0.56ι}), (ɕ̂2, {0.62 + 0.69ι, 0.58 + 0.92ι}),
(ɕ̂3, {0.16 + 0.31ι, 0.44 + 0.66ι}), (ɕ̂4, {0.12 + 0.56ι, 0.76 + 0.45ι})

} 

We need to determine which diseases, among P̿ɕ̂(ɕ̂  =  1, 2, 3, 4 ) the victim Q̿  has. To do this, 

we calculated the proposed SMs between Q̿ and P̿ɕ̂ (ɕ̂   =  1, 2, 3, 4, )  and summarized results in 

Table 1. As exposed in Table 1, the highest degree of similarity is between Q̿ and P̿3 as measured by 

proposed SMs. According to the proposed SMs, indicating that the victim Q̿ is affected by malaria.The 

ranking of the proposed SMs between Q̿ and P̿ɕ̂(ɕ̂ =  1, 2, 3, 4, ) is also shown in Table 1. A graphical 

representation of the proposed SMs can be seen in Figure 1.  

Consideration of the weight of the fundamentals is crucial when dealing with actual decision-

making issues. If we assume that the weight of every component Xɕ̂(ɕ̂ = 1,2,3,4) is 0.2, 0.8, 0.1 and 

0.2, correspondingly. Thereupon the proposed WSMs between Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4) Values are 

given in Table 2. We need to find out which of the P̿ɕ̂(ɕ̂ = 1,2,3,4) diseases the victim Q̿  has. For this, 

we calculated the proposed WSMs between  Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4)  and presented in Table 2. Table 

2 makes this clear that the degree of WSMs among  Q̿ and P̿𝟑 is maximum as measured by the 

proposed WSMs. This means that malaria disease has affected the victim Q̿  has. The rank of the 

proposed WSMs between Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4)  is shown in Table 2. The graphical demonstration 

of the proposed WSMs among Q̿ and  P̿ɕ̂(ɕ̂ = 1,2,3,4)  are established in Figure 2. 

Table 1: Procedures for proposed SMs for medical diagnosis 

SMs           Ṧ(Q̿, P̿1)               Ṧ(Q̿, P̿2) Ṧ(Q̿, P̿3) Ṧ(Q̿, P̿4)        Ranking 

Ṧ(𝐐̿, 𝐏̿ɕ̂)       0.7954     0.7689           0.8235          𝟎. 𝟖𝟎𝟕𝟓 𝐏̿𝟑 > 𝐏̿𝟒 > 𝐏̿𝟏 > 𝐏̿𝟐 

 

 Table 2: Procedures for proposed WSMs for medical diagnosis 

WSMs          Ṧ𝑤(Q̿, P̿1)               Ṧ𝑤(Q̿, P̿2) Ṧ𝑤(Q̿, P̿3) Ṧ𝑤(Q̿, P̿4)          Ranking 

Ṧ𝒘(𝐐̿, 𝐏̿ɕ̂)         0.9240     0.9143           0.9488   𝟎. 𝟗𝟑𝟖𝟕 𝐏̿𝟑 > 𝐏̿𝟒 > 𝐏̿𝟏

> 𝐏̿𝟐 
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Figure 1.The graphical picture of proposed SMs for Medical diagnoses 

 

Figure 2.The graphical picture of proposed WSMs for Medical diagnoses 

6.2. Application in Pattern Recognition 

The pattern is everything, starting from the digital realm to this digital world. Either way 

should be watched. This can happen either through visual representation or with the use of 

mathematical tools like algorithms. The process of interpreting meaningful relationships and 

recurring patterns is Pattern Recognition (building PR).The algorithm feature of the machine learning 

which is responsible for the identification process. One of the best ways to present pattern 

recognition (building PR) is the labeling of data dependent on what previously is known about it or 
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its statistics, derived from patterns or their depictions. On the other hand, pattern recognition 

(building PR)   management serves as an essential component of application potential. 

Step 1: Define the set of specified building substance P̿ɕ̂(ɕ̂ = 1,2,3,4) and unspecified building 

substance Q̿. 

Step 2: Calculate SMs among specified building substance P̿ɕ̂(ɕ̂ = 1,2,3,4)  and unspecified building 

substance Q̿. 

Step 3: Calculate the degree of SMs among the specified building substance and unspecified building 

substance Q̿ using proposed SMs according to the definition 11. 

Step 4: Rank of the unspecified building substance Q̿ is most similar to the specified building 

substance P̿ɕ̂(ɕ̂ = 1,2,3,4). 

Step 5: Find the unspecified building substance Q̿ with the highest similarity degree between 

specified building substances.  

Step 6: End 

Example 2: Assume there are four recognized building materials 

P̿1(concrete), P̿2(paints), P̿3(steel), P̿4(brick) which are characterized by CHFSs   

P̿1(concrete) = {
(ɕ̂1, {0.3 + 0.4𝜄, 0.2 + 0.8𝜄}), (ɕ̂2, {0.8 + 0.5𝜄, 0.9 + 0.6𝜄}),
(ɕ̂3, {0.1 + 0.7𝚤, 0.4 + 0.7𝚤}), (ɕ̂4, {0.2 + 0.4𝚤, 0.6 + 0.3𝚤})

} 

P̿2(paints) = {
(ɕ̂1, {0.4 + 0.6𝜄, 0.6 + 0.7𝜄}), (ɕ̂2, {0.31 + 0.98𝜄, 0.57 + 0.66𝜄}),

(ɕ̂3, {0.73 + 0.47𝚤, 0.23 + 0.62𝚤}), (ɕ̂4, {0.41 + 0.68𝚤, 0.39 + 0.68𝚤})
} 

P̿3 (steel) = {
(ɕ̂1, {0.51 + 0.97𝜄, 0.33 + 0.62𝜄}), (ɕ̂2, {0.23 + 0.11𝜄, 0.51 + 0.73𝜄}),
(ɕ̂3, {0.67 + 0.43𝚤, 0.82 + 0.84𝚤}), (ɕ̂4, {0.50 + 0.61𝚤, 0.82 + 0.53𝚤})

} 

P̿4 (brick) = {
(ɕ̂1, {0.72 + 0.79𝜄, 0.40 + 0.56𝜄}), (ɕ̂2, {0.62 + 0.69𝜄, 0.58 + 0.92𝜄}),
(ɕ̂3, {0.16 + 0.31𝚤, 0.44 + 0.66𝚤}), (ɕ̂4, {0.15 + 0.91𝚤, 0.33 + 0.63𝚤})

} 

Now, let it be an unspecified building substance that has to be recognized. 

Q̿ = {
(ɕ̂1, {0.81 + 0.41𝜄, 0.66 + 0.72𝜄}), (ɕ̂2, {0.46 + 0.65𝜄, 0.91 + 0.93𝜄}),
(ɕ̂3, {0.81 + 0.48𝚤, 0.32 + 0.47𝚤}), (ɕ̂4, {0.34 + 0.85𝚤, 0.11 + 0.70𝚤})

} 

Where ɕ̂1 = qurtz and fledspar, ɕ̂2 = ironore, ɕ̂3 = pigments, ɕ̂4 = cement. For a clearer 

comprehension, let us assume ɕ̂1 = qurtz and fledspar in P̿4 similarly  ɕ̂2 = ironore in P̿3  , ɕ̂3 =

pigments in P̿2 and ɕ̂4 = cement in P̿1. And as we have to go further in finding that the unspecified 

building substance Q̿ belongs to which of the specified building substance   P̿ɕ̂(ɕ̂ = 1,2,3,4). To this 

end, we obtained the values of the suggested SMs for Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4) as in Table 3. As recorded 
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in Table 3, we observed that SM among Q̿ and P̿2 is the greatest of all similarities among Q̿ and P̿ɕ̂(ɕ̂ =

1,2,3,4). This means for object of the unspecified building substance Q̿ belongs to the specified 

building substance P̿2  .The ranking of suggested SMs among Q̿ and P̿ɕ̂(ɕ̂ =  1,2,3,4) are also depicted 

in Table 3. The following Figure 3 illustrates the suggested SMs between Q̿ and P̿ɕ̂ that articulate the 

graphical representation for  P̿ɕ̂(ɕ̂ = 1,2,3,4).   

The weight of components has significant importance in supporting real decision-making 

difficulties. Uncertainty we assume that the weight of each component. P̿ɕ̂(ɕ̂ = 1,2,3,4) is 0.2, 0.8, 

0.1, and 0.3 correspondingly. Thereupon the proposed WSMs for Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4) Values are 

given in Table 4. And as we have to go further in finding that the unspecified building substance Q̿  

belong to which of the specified building substance  P̿ɕ̂(ɕ̂ = 1,2,3,… ).To this end, we obtained the 

values of the proposed WSMs for Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4, ) as in Table 4. As we recorded from Table 4, 

We observe that WSMs among Q̿ and P̿2 is greatest among all similarities between Q̿ and 

P̿ɕ̂(ɕ̂ = 1,2,3,4). This means that for the object of the unspecified building substance Q̿ belongs to 

the specified building substance P̿2.Ranking of proposed WSMs between Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4) are 

also depicted in Table 4. The following Figure 4 illustrates the proposed WSMs between Q̿ and P̿ɕ̂ that 

articulate the graphical representation for P̿ɕ̂(ɕ̂ = 1,2,3,4).    

Table 3: Procedures for proposed SMs for building pattern recognition 

SMs           Ṧ(Q̿, P̿1)               Ṧ(Q̿, P̿2) Ṧ(Q̿, P̿3) Ṧ(Q̿, P̿4)               Ranking 

Ṧ(𝐐̿, 𝐏̿ɕ̂)       0.8324     0.8971          0.8266          𝟎. 𝟖𝟕𝟔𝟓      𝐏̿𝟐 > 𝐏̿𝟒 > 𝐏̿𝟏

> 𝐏̿𝟑 

Table 4: Procedures for proposed WSMs for building pattern recognition 

WSMs          Ṧ𝑤(Q̿, P̿1)               Ṧ𝑤(Q̿, P̿2) Ṧ𝑤(Q̿, P̿3) Ṧ𝑤(Q̿, P̿4)        Ranking 

Ṧ𝒘(𝐐̿, 𝐏̿ɕ̂)       0.9215    0.9478           0.9074           𝟎. 𝟗𝟒𝟔𝟕 𝐏̿𝟐 > 𝐏̿𝟒 > 𝐏̿𝟏 >

𝐏̿𝟑  
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Figure 3.The graphical picture of proposed SMs for building pattern recognition 

 

 

Figure 4. The graphical picture of proposed WSMs for building Pattern recognition 

7. Comparison: 

The goal of this section is to describe the comparative analysis of the suggested SMs 

introduced for Tamir’s CFS environment, HFS and CHFSs to a few other SMs to demonstrate its 

efficacy.  

Example 3. As mentioned, let four specified building substances be P̿ɕ̂(ɕ̂ = 1,2,3,4) which are 

characterized in the configuration of HFSs as discussed below 

P̿1  = {
(ɕ̂1, {0.54,0.72}), (ɕ̂2, {0.47,0.81}),
(ɕ̂3, {0.67,0.82}), (ɕ̂4, {0.98,0.66})

} 
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P̿2  = {
(ɕ̂1, {0.22,0.18}), (ɕ̂2, {0.91,0.34}),
(ɕ̂3, {0.58,0.85}), (ɕ̂4, {0.89,0.17})

} 

P̿3  = {
(ɕ̂1, {0.37,0.42}), (ɕ̂2, {0.43,0.62}),
(ɕ̂3, {0.86,0.89}), (ɕ̂4, {0.51,0.44})

} 

P̿4  = {
(ɕ̂1, {0.14,0.19}), (ɕ̂2, {0.71,0.82}),
(ɕ̂3, {0.63,0.68}), (ɕ̂4, {0.21,0.33})

} 

Thus, enables an unspecified building substance that wants to be specified.  

Q̿ = {
(ɕ̂1, {0.31,0.62}), (ɕ̂2, {0.56,0.91}),
(ɕ̂3, {0.34,0.11}), (ɕ̂4, {0.52,0.69})

} 

 When we added 0𝜄 formerly the data was obtainable in the form of HFSs changed into the CHFSs 

P̿1  = {
(ɕ̂1, {0.54 + 0𝜄 ,0.72 + 0𝜄 }), (ɕ̂2, {0.47 + 0𝜄 ,0.81 + 0𝜄 }),
(ɕ̂3, {0.67 + 0𝜄 ,0.82 + 0𝜄 }), (ɕ̂4, {0.98 + 0𝜄 ,0.66 + 0𝜄 })

} 

P̿2  = {
(ɕ̂1, {0.22 + 0𝜄 ,0.18 + 0𝜄 }), (ɕ̂2, {0.91 + 0𝜄 ,0.34 + 0𝜄 }),
(ɕ̂3, {0.58 + 0𝜄 ,0.85 + 0𝜄 }), (ɕ̂4, {0.89 + 0𝜄 ,0.17 + 0𝜄 })

} 

P̿3  = {
(ɕ̂1, {0.37 + 0𝜄 ,0.42 + 0𝜄 }), (ɕ̂2, {0.43 + 0𝜄 ,0.62 + 0𝜄 }),
(ɕ̂3, {0.86 + 0𝜄 ,0.89 + 0𝜄 }), (ɕ̂4, {0.51 + 0𝜄 ,0.44 + 0𝜄 })

} 

P̿4  = {
(ɕ̂1, {0.14 + 0𝜄 ,0.19 + 0𝜄 }), (ɕ̂2, {0.71 + 0𝜄 ,0.82 + 0𝜄 }),
(ɕ̂3, {0.63 + 0𝜄 ,0.68 + 0𝜄 }), (ɕ̂4, {0.21 + 0𝜄 ,0.33 + 0𝜄 })

} 

And 

Q̿ = {
(ɕ̂1, {0.31 + 0𝜄 ,0.62 + 0𝜄 }), (ɕ̂2, {0.56 + 0𝜄 ,0.91 + 0𝜄 }),
(ɕ̂3, {0.34 + 0𝜄 ,0.11 + 0𝜄 }), (ɕ̂4, {0.52 + 0𝜄 ,0.69 + 0𝜄 })

} 

Table 5: Comparison of proposed SMs with some existing SMs 

Methods  Score values  Ranking  

Xu and Xia[23]                                                                Ṧ𝒏𝒆(𝐐̿, 𝐏̿𝟏) = 𝟎. 𝟓𝟐𝟑𝟕, 

Ṧ𝒏𝒆(𝐐̿, 𝐏̿𝟐) = 𝟎. 𝟑𝟓𝟓𝟑, 

Ṧ𝑛𝑒(Q̿, P̿3) = 0.4792, 

= Ṧ𝑛𝑒(Q̿, P̿4) = 0.5313 

   P̿4 > P̿1 > P̿3 > P̿2                     
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Rezaei at al[27] Ṧ𝒏𝒉(𝐐̿, 𝐏̿𝟏) = 𝟎. 𝟒𝟖𝟕𝟓, 

Ṧ𝒏𝒉(𝐐̿, 𝐏̿𝟐) = 𝟎. 𝟏𝟕 

Ṧ𝑛ℎ(Q̿, P̿3) = 0.44, 

Ṧ𝑛ℎ(Q̿, P̿4) = 0.4075 

𝐏̿𝟏 > 𝐏̿𝟑 > 𝐏̿𝟒 > 𝐏̿𝟐 

𝐋𝐢 𝐚𝐭 𝐚𝐥[𝟐𝟔]   Ṧ𝒈(𝐐̿, 𝐏̿𝟏) = 𝟎. 𝟔𝟔𝟑𝟓, 

Ṧ𝒈(𝐐̿, 𝐏̿𝟐) = 𝟎. 𝟓𝟒𝟒𝟒, 

  Ṧ𝑔(Q̿, P̿3) = 0.6316 

Ṧ𝑔(Q, P̿4) = 0.6685 

𝐏̿𝟒 > 𝐏̿𝟏 > 𝐏̿𝟑 > 𝐏̿𝟐 

Proposed SMs Ṧ(𝐐̿, 𝐏̿𝟏) = 𝟎. 𝟖𝟑𝟓𝟏, 

Ṧ(𝐐̿, 𝐏̿𝟐) = 𝟎. 𝟖𝟑𝟖𝟗 

Ṧ(Q̿, P̿3) = 0.8698, 

Ṧ(Q̿, P̿4) = 0.8828 

𝐏̿𝟒 > 𝐏̿𝟑 > 𝐏̿𝟐 > 𝐏̿𝟏 

 

 

Figure 5 Geometrical representation of data given in Table 5 

Table 6: Comparison of proposed SMs with some existing SMs 

Methods  Score values  Ranking  

Xu and Xia [23]                                                                Failed Failed 

Rezaei at al. [27] Failed Failed 

𝐋𝐢 𝐚𝐭 𝐚𝐥. [𝟐𝟔]   Failed Failed 

Proposed SMs Ṧ(Q̿, P̿1) = 0.8324 

Ṧ(Q̿, P̿2) = 0.8971 

Ṧ(Q̿, P̿3) = 0.8266, 

Ṧ(Q̿, P̿4) = 0.8765 

 𝐏̿𝟐 > 𝐏̿𝟒 > 𝐏̿𝟏 > 𝐏̿𝟑 
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Figure 6: The observation among proposed SMs and existing SMs of Example 2. 

For Example 3, we want to discover that the unknown building substance Q̿ belongs to which 

of the specified building substance P̿ɕ̂(ɕ̂ = 1,2,3,4).  In Example 3, the data is in the shape of HFS, this 

type of data is solvable through the existing SMs as exposed in Table 5. By adding 0𝜄 the data of 

Example 3, converted to the shape of CHFSs and through the proposed SMs, we can find the SMs 

among Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4) which are also prearranged in Table 5. Our proposed SMs exposed that 

unspecified building substance Q̿ belongs to the building substance P̿4 because the similarity among 

Q̿ and P̿4 is maximum. The rank of the proposed and current SMs is also defined in Table 5. Adjacent 

we have a graphical observation of the proposed and current SMs, which is denoted in Figure 5. Next, 

we deliberate the observation among interpreted and existing SMs for Example 2. In Example 2, the 

data are in the form of CHFSs. We recognize that not any SMs occur in the literature to explain this 

type of data. But through proposed SMs, we can discover the similarities among Q̿ and 

P̿ɕ̂(ɕ̂ = 1,2,3,4).From Table 6, we note that the data designated in Example 2, are resolvable by 

proposed SMs. The proposed SMs develop the similarity among Q̿ and P̿ɕ̂(ɕ̂ = 1,2,3,4) as 

demonstrated in Table 6. Our proposed SMs expose that unspecified building substance Q̿  belongs 

to the specified building substance P̿2 , because similarities among  Q̿ and P̿2 is maximum. The rank 

of the SMs is also presented in Table 6. Adjacent we have a graphical demonstration of observation 

of proposed and existing SMs which is represented in Figure 6.  

As of the discussion overhead, it is clear that our explored SMs can place more fuzzy data and 

categorize it mainly in situations in actual life problems. In the interpretation of CHFS, we discussed 
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the SMs; Our SMs are better suited for real-life problem-solving and the existing as well as our SMs 

have a broader coverage than the existing SMs. 

8. Conclusion 

  In this article, we have explored new SMs for CFSs, HFSs, and CHFSs. We have developed a 

generalized approach to CHFSs, incorporating two key factors "𝑡" which indicates the level of 

uncertainty, and "𝑝" representing the "ȴ𝑝" norm. The proposed measures are more intuitive and 

simpler to apply across various contexts. We supported our recommendations with examples to 

demonstrate comparative effectiveness. The findings indicate that the suggested SMs can be utilized 

in future studies in fields such as pattern recognition, medical diagnosis, and data mining. Overall, 

the CHFS measures developed in this article are indeed more logical and comprehensible.  

In the future, we can extend these notions to some aggregation theory proposed in [30-33]. 

We can explore the entropy measures for the proposed structure as given in [34-36].  
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